Metrology of automated data analysis for cardiac arrhythmia management

Short Name: MedalCare, Project Number: 18HLT07

Validating software for automatic diagnoses of cardiovascular diseases

Image of heart beats on a ECG

Cardiovascular disease (CVD) is responsible for 3.9 million deaths a year in Europe. Currently, Electrocardiography (ECG) is used for a non-invasive and cost-effective way for initial clinical examinations and subsequent patient monitoring. Automated detection systems and computer-based machine learning techniques are becoming available for diagnosing and monitoring CVD such as ischemia and arrhythmia. To build trust in automated CVD diagnostics, and help reduce healthcare costs, a standardised procedure needs development to validate complex underlying algorithms and machine learning techniques.

 

This project developed a synthetic reference ECG measurement dataset, including healthy variations and selected CVD pathologies, to performance test CVD diagnostic devices. The project has, for the first time, provided traceability for CVD data analysis techniques. Such standardised testing will help manufacturers develop new ECG devices with improved CVD diagnosis reliability, thus helping promote uptake of the technology, both in clinical use and for monitoring equipment for use in the home.

 

Self-supervised representation learning from 12-lead ECG data
2022

Computers in Biology and Medicine

Robustness of convolutional neural networks to physiological electrocardiogram noise
2021

Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences

Deep Learning for ECG Analysis: Benchmarks and Insights from PTB-XL
2020

IEEE Journal of Biomedical and Health Informatics

Participating EURAMET NMIs and DIs

IMBiH (Bosnia and Herzegovina)

LNE (France)

NPL (United Kingdom)

PTB (Germany)

Other Participants

Arrhythmia Alliance (United Kingdom)
Fraunhofer-Gesellschaft zur Foerderung der angewandten Forschung e.V. (Germany)
Karlsruher Institut fuer Technologie (Germany)
King's College London (United Kingdom)
Medizinische Universität Graz (Austria)
Technische Universität Berlin (Germany)

Information

Programme
EMPIR
Field
Health
Status
completed
Call
2018
Duration
2019-2022
Project website