

COMPARISON ON VOLTAGE REFLECTION COEFFICIENT (VRC) OF AN RF SOURCE

FINAL REPORT

EMPIR 15RPT01 RFMICROWAVE

May 17th, 2019

Comparison on Voltage Reflection Coefficient (VRC) of an RF Source - Final Report

CONTENTS

1.	Objective and general information	4
2.	Travelling standard	4
3.	Participant laboratories	6
4.	Measurement calendar	8
5.	Transport case	9
6.	Transportation of travelling standard	9
6.1.	Failure of travelling standard	9
6.2.	Financial aspects	9
7.	Measurement parameters and working frequency points	10
8.	Measurement results of the pilot laboratory	10
9.	Assigned Value and Figure of Merit	10
9.1.	Determination of outliers	11
9.2.	Computation of the Assigned Value	12
9.3.	Uncertainty associated to the Assigned Value	12
9.4.	Figure of Merit	12
10.	Measurement instructions	13
10.1	. Precautions	13
10.2	Before the measurements	13
10.3	. Powering of the standard during the measurements	13
10.4	. Environmental conditions	13
10.5	. Methods of measurement	13
10.6	 Reported ambient conditions during measurements 	
11.	Measurement uncertainty	18
12.	Reporting of results	19
13.	Measurement results of the participant laboratories	20
13.1	. Measurement of scalar Reflection Coefficient	20
13.2	Measurement of phase	22
14.	Assigned Value and Figure of Merit of the participants	22
14.1	. Measurement of scalar Reflection Coefficient	23
15.	Evaluation of results	29
15.1	. Evaluation of the participation of laboratories	
15.2	2. Drift of the travelling standard	
15.3	6. 'Closing-of-loop' criteria	
16.	Final report of the comparison	34
17.	Confidentiality	34
17.1	. Identification of laboratories	

18.	Acknowledgement	34
19.	References and applicable documentation	35
20.	Annex I – Measurement report from TUBITAK UME Turkey	36
21.	Annex II – Measurement report from METAS Switzerland	37
22.	Annex III – Measurement report from GUM Poland	38
23.	Annex IV – Calibration certificates from INTA Spain	39
24.	Annex V – Calibration certificate from EIM/NQIS Greece	40
25.	Annex VI – Calibration certificate from SIQ Slovenia	41
26.	Annex VII – Measurement report from NIS Egypt	42

1. Objective and general information

An intercomparison exercise has been carried out on Voltage Reflection Coefficient (VRC) of an RF signal generator fitted with Type N female connector between the interested EMPIR project partners. The purpose of the exercise is to provide confidence in scalar VRC measurements among the different laboratory partners with capability and experience in measurement of Voltage Reflection Coefficient of active devices. This demonstration of capability could be subsequently claimed before national accreditation bodies or before third parts (customers and stakeholders).

This inter-laboratory comparison exercise has taken place in the frame of the Project of Development of RF and Microwave Metrology Capability (EMPIR 15RPT 01 'RFMicrowave'). The comparison was also registered as EURAMET EM-1461 comparison.

Seven participants have taken part in the comparison exercise: TUBITAK UME Turkey, SIQ Slovenia, GUM Poland, EIM/NQIS Greece, NIS Egypt, METAS Switzerland and INTA Spain as the pilot laboratory.

The comparison has been performed by measuring scalar Voltage Reflection Coefficient at 50 MHz, 2 GHz, 8 GHz, 12 GHz, 15 GHz and 18 GHz for an output power level of 0 dBm (CW signal).

INTA (Instituto Nacional de Técnica Aeroespacial) in Spain has acted as the pilot laboratory. The travelling standard has been provided by INTA. INTA was responsible for monitoring of the standard's performance during the circulation, as well as for evaluation and reporting of the comparison results.

The comparison has been carried out in accordance with the CCEM Guidelines for Planning, Organizing, Conducting and Reporting Key, Supplementary and Pilot Comparisons [1]. In this document the obtained results of this international comparison on scalar VRC of a RF source are presented. As an additional parameter, phase of complex VRC has also been measured by one of the participants. In this case the results are given but obviously not compared.

2. Travelling standard

The travelling standard is a Synthesized CW Generator (see Figure 1). The identification of the travelling standard is as follows:

Manufacturer	: Hewlett Packard		
Model	: 83712A		
Serial number	: 3339A00223		
Frequency Range	: 0.01 GHz -20 GHz		

Figure 1. Representative photo of the travelling standard

The comparison exercise has consisted in the measurement of output VRC of the generator, at the following frequencies: 50 MHz, 2 GHz, 8 GHz, 12 GHz, 15 GHz and 18 GHz. The parameter under test has been be measured for an output level of 0 dBm.

The travelling standard was supplied by INTA. The general specifications of standard are given in Table 1.

The participants submitted their measurement results on in a calibration certificate containing at least the six (6) measurement points detailed above. The results have been expressed as measured VRC plus its associated expanded uncertainty for a confidence level of 95.45%.

Frequency	10 MHz to 20 GHz		
Maximum Power	10 MHz to 1 GHz, +13 dBm CW 1 GHz to 18 GHz, +10 dBm CW		
Connector Type	Type N female		
Output Impedance	Nominal 50 Ω		
Maximum SWR	< 2.0:1		
Dimensions	D: 498 mm W: 426 mm H: 133 mm		
Weight	< 16 kg		
Power requirement	198 V – 264 V AC, 48 Hz – 66 Hz, 400 VA maximum		

Table 1. General specifications of HP 83712A Synthesized CW Generator

3. Participant laboratories

The pilot institute for this comparison is INTA (Spain). The contact details of the coordinator are given below:

Pilot Institute	:	Instituto Nacional de Técnica Aeroespacial (INTA)
Coordinator	:	Manuel Rodríguez Higuero Tel: +34 91 520 1859 Fax: +34 91 520 1645 E-mail: <u>rodriguezm@inta.es</u>

The participant institutes and contact persons with their addresses are given in Table 2.

Table 2. Participant laboratories

Country	Institute	Acronym	Shipping Address	Contact Person
SPAIN	Instituto Nacional de Técnica Aeroespacial	INTA	Instituto Nacional de Técnica Aeroespacial (INTA) Centro de Metrología y Calibración – Edificio B-15 Ctra. a Ajalvir, p.k. 4,5 28850 Torrejón de Ardoz (Madrid) SPAIN	Manuel RODRIGUEZ rodriguezm@inta.es Tel: +34 91 520 1859 Fax: +34 91 520 1645
TURKEY	Ulusal Metroloji Enstitüsü	TUBITAK UME	TUBITAK Ulusal Metroloji Enstitüsü (UME) TUBITAK Gebze Yerleşkesi Barış Mah. Dr. Zeki Acar Cad. No:1 41470 Gebze-Kocaeli, TURKEY	Murat CELEP <u>murat.celep@tubitak.gov.tr</u> Tel: +90 262 679 50 00 Fax: +90 262 679 5001
SLOVENIA	Slovenski Institut za Kakovost in Meroslovje	SIQ	Slovenski Institut za Kakovost in Meroslovje (SIQ) Trzaška cesta 2 SI-1000 Ljubljana SLOVENIA	Borut PINTER <u>borut.pinter@siq.si</u> Tel: +386 (0)1 4778 322 Fax: +386 (0)1 4778 303
POLAND	Central Office of Measures	GUM	Central Office of Measures (GUM) Elektoralna 2 00-139, Warsaw POLAND	Łukasz USYDUS <u>I.usydus@gum.gov.pl</u> Tel: +48 22 581 9503 Fax: +48 22 581 9499
GREECE	National Quality Infrastructure System	EIM/NQIS	National Quality Infrastructure System (NQIS/EIM) Industrial area of Thessaloniki, Block 45, GR-57022 Sindos GREECE	George KRIKELAS <u>gkrik@eim.gr</u> Tel: +30 2310 569 975 Fax: +30 2310-569 996
EGYPT	National Institute for Standards	NIS	National Institute for Standards (NIS) President Sadat (Tersa) St El-Haram, El-Giza P.O. box: 136 Giza Code: 12211 EGYPT	AbdelRahman SALLAM <u>Sallam2050@gmail.com</u>
SWITZERLAND	Federal Institute of Metrology	METAS	Federal Institute of Metrology (METAS) Lindenweg 50 CH-3084 Bern-Wabern SWITZERLAND	Daniel STALDER daniel.stalder@metas.ch Tel: +41 58 387 0491 Fax: +41 58 387 0210

4. Measurement calendar

The measurement calendar for the comparison exercise is given in Table 3. The circulation of travelling standard was organized so that the number of entrances in and departures from the EU were minimized. However, the travelling standard finally had to be sent again to the pilot laboratory so that the expiry date of the ATA carnet which accompanied the equipment was not reached. After this the standard was sent onto the last participant with no ATA carnet¹.

The pilot laboratory performed three different sets of measurements: two measurements previously to the launching of the intercomparison exercise and a final measurement by the completion of the exercise, once all the participants had performed their measurements. With the two initial measurements the stability of the travelling standard was assessed, whereas with the third measurement by the pilot laboratory it was demonstrated that no damage or unwanted drift had been suffered by the standard, and that its performance showed the stability required for the exercise. An analysis of the stability of the travelling instrument by the closing of the measurement loop is included in this report.

Once a participant was ready with the measurement of the travelling standard, each laboratory arranged delivery of the equipment to the next participant in the schedule list.

The travelling standard was checked for damage immediately after reception in each laboratory. No noticeable damages were detected.

Acronym of Institute	Country	Measurements
INTA	Spain	28 th February to 7 th March 2017
INTA	Spain	19 th and 20 th April 2017
NIS	Egypt	
TUBITAK UME	Turkey	8 th to 16 th August 2018
SIQ	Slovenia	16 th to 27 th April 2018
GUM	Poland	22 nd May 2018
EIM/NQIS	Greece	15 th to 21 st June 2018
METAS	Switzerland	3 rd to 17 th January 2019
INTA	Spain	11 th and 12 th March 2019

Comparison on Voltage Reflection Coefficient (VRC) of an RF Source - Final Report

¹ The travelling standard was not always sent together with its ATA carnet. This was done at the election of each partner, following its national regulations for export of scientific equipment.

5. Transport case

The travelling standard and miscellaneous equipment travelled in a well-protected package whose dimensions were approximately (75 cm length x 67 cm width x 42 cm height) and a weight, including the travelling standards, of approx. 30 kg.

The content of the transport case is given in below.

- Travelling standard: Hewlett Packard Synthesized CW Generator model 83712A, serial number 3339A00223
- ATA carnet

6. Transportation of travelling standard

The comparison was initially organised in one single loop. As mentioned before, the travelling standard had to be sent back to the pilot laboratory in order for the expiry date of the ATA carnet not to be reached. After this, a second loop with just one participant (METAS Switzerland) was added.

Each participant laboratory was responsible for the transportation of the travelling standard to the next laboratory. The cost of transportation was paid by the laboratory which was sending the travelling standard.

INTA sent the travelling standard to the first and to the last laboratory and the costs of transportation from INTA to these two laboratories were paid by INTA. Each participant was responsible for the transportation expenses to the next participant laboratory in the list.

The estimated cost of the travelling standard and miscellaneous equipment (in order for the carrier company to include a transportation insurance covering any damage caused to the equipment) was 1,000 EUR.

After arrival in the participant's laboratory, the standard have been checked and allowed to stabilise in a temperature and, possibly, humidity controlled room for at least one day before use.

Each institute had at least two weeks available for measurement. This included the measurement itself and the stabilisation of the standard. The initially foreseen measurement calendar was delayed mainly due to difficulties in coping with the different customs departments of the many countries involved.

6.1. Failure of travelling standard

N.A.

6.2. Financial aspects

Each participant laboratory was responsible for costs for the transportation expenses to the following laboratory, measurements as well as any damage that may have occurred within its country. Visual and mechanical inspection, as well as measurement by the pilot laboratory, revealed no damage at all.

The overall costs for the organisation of the comparison were covered by the pilot institute. The pilot institute had no insurance for any loss or damage of the travelling standard, except for the

insurance related to the delivery to the first and to the last participant in the list (first and last transportation of the standards).

7. Measurement parameters and working frequency points

The parameter measured and the working frequency points are given in Table 4.

Parameter	Output power level @ generator (CW signal)	Measurement Frequencies
Scalar Voltage Reflection Coefficient (VRC)	0 dBm	50 MHz, 2 GHz, 8 GHz, 12 GHz, 15 GHz and 18 GHz

The parameter under test is scalar Voltage Reflection Coefficient.

Also the following information should be given:

- Ambient temperature,
- > Ambient relative humidity,
- > Pin depth of the travelling standard.

No correction has been applied for the ambient temperature and relative humidity.

8. Measurement results of the pilot laboratory

All participants have issued a Calibration Certificate (alternatively a Measurement Report), including all measured data together with their expanded uncertainty, for a confidence level of 95.45%.

As measurement result for INTA, the mean value of the three measurements performed in February – March 2017, in April 2017 and in March 2019 was taken. The measurement uncertainty was computed as a function of the individual measurements and their associated uncertainties:

$$x_{INTA} = \sum_{i=1}^{N} \frac{x_{meas\,i}}{N}$$

$$U(x_{INTA}) = 2 \cdot \sqrt{\left(\frac{\max[x_{meas\,i}] - \min[x_{meas\,i}]}{2 \cdot \sqrt{3}}\right)^2 + \left(\frac{\max[U(x_{meas\,i})]}{2}\right)^2}$$

Where the subindex *i* stands for each individual measurement by the pilot laboratory. The observed differences between the three rounds of measurements, made by INTA for control purposes, are negligible and show that there has been no significant drift in the measured parameters of the DUT during the comparison.

9. Assigned Value and Figure of Merit

The Intercomparison Assigned Value (AV) for each measurement frequency has been calculated using the results of all seven participant laboratories. The method used will be the Weighed Mean of those participants not considered as outliers.

9.1. Determination of outliers

The determination of outliers is based on the well-known 3·MAD criterion, which makes use of the Median of all participants and of the calculated 'Median of Absolute Deviations' (MAD). Those participants whose difference with respect to the Median is demonstrated to be more than three times the Median of Absolute Deviations have been considered as outliers, and as such have not been taken into account in the determination of the Weighted Mean and thus of the Assigned Value of the intercomparison.

<u>Computation of the Median</u>: The Median is a robust estimator for the Assigned Value of a set of results, as provided by the participants in an intercomparison. It is defined as the value situated exactly in the middle of the distribution of all participants (assuming an odd number of participants), thus leaving the same number of participants above and below. When the number of participants is even, it is defined as the Mean Value of those two whose results leave the same number of participants of the same number of participants.

$$\tilde{x} = \text{Median}\{x_i, i = 1 \dots N\}$$

By definition, the Median of a set of results minimises the sum of the distances of all participants with respect to the Median, whereas the Mean Value minimises the sum of the squares of the distances of all participants with respect to the Mean Value. This makes the Median more robust to the presence of outliers (values abnormally situated with respect to the distribution of the rest of participants).

<u>Computation of MAD (Median of Absolute Deviations)</u>: It is defined as the Median of the absolute deviations, those being the absolute values of the differences between the participants and the Median:

 $MAD = Median\{|x_i - \tilde{x}|, i = 1 \dots N\}$

In case that the scatter of participants would follow a Gaussian distribution, the following approximate relationship exists between the MAD and the experimental Standard Deviation:

$$\sigma_x \cong 1.483 \cdot MAD$$

<u>Criterion for determination of outliers</u>: The usual criterion for the determination of outliers is as follows: those participants whose absolute deviation with respect to the Median <u>exceeds three</u> times the MAD is considered to be abnormally situated (above or below) with respect to the rest of participants. An outlier is subsequently eliminated from the determination of the intercomparison Assigned Value.

$$x_i \in \text{Outliers} \iff |x_i - \tilde{x}| \ge 3 \cdot \text{MAD}$$

For a (theoretically assumed) Gaussian distribution, this criterion is equivalent to a confidence level of 95% due to the following approximate relationship:

$$3 \cdot MAD \cong 2 \cdot \sigma_x$$

9.2. Computation of the Assigned Value

As Assigned Value for a set of intercomparison results, the Weighted Mean is generally accepted as representative of the dispersion of the laboratory results, weighted by their respective measurement uncertainties:

$$x_{AV} \equiv \sum_{i=1}^{N} \omega_i \cdot \mathbf{x}_i$$

Where the weights ω_i for each participant are defined as:

$$\omega_i = \frac{U^{-2}(x_i)}{U^{-2}(x_1) + \dots + U^{-2}(x_N)}$$

In case that all measurement uncertainties, as provided by the participant laboratories, is the same or nearly the same, the Weighted Mean coincides with the Arithmetic Mean.

9.3. Uncertainty associated to the Assigned Value

The uncertainty of the Weighted Mean is given by:

$$U^2(x_{AV}) = \sum_{i=1}^N \omega_i^2 \cdot U^2(x_i)$$

This expression can be simplified introducing the definition of the weights ω_i :

$$\frac{1}{U^2(x_{AV})} = \frac{1}{U^2(x_1)} + \dots + \frac{1}{U^2(x_N)}$$

9.4. Figure of Merit

As a figure of merit for each participant, the Normalized Error with respect to the Comparison Assigned Value and its associated uncertainty is computed:

$$E_{norm} = \frac{|x_{LAB} - x_{AV}|}{\sqrt{U^2(x_{LAB}) + U^2(x_{AV})}}$$

 x_{LAB} is the Measured Value for each participant laboratory

 $x_{\rm AV}$ is the Assigned Value of the intercomparison

 $U(x_{LAB})$ is the measurement Uncertainty for each participant laboratory

U(x_{AV}) is the Uncertainty associated to the Assigned Value

The proposed figure of merit applies to all seven participants. A Normalized Error less than unity can be considered satisfactory, and excellent if it lies below a few tenths, showing a good level of agreement between the seven participant laboratories. The evaluation criteria for E_{norm} which are given below:

 $\begin{array}{l} \mbox{If } \big| \ E_{\rm norm} \big| \le 1 \ \mbox{then it is successful} \\ \mbox{If } \big| \ E_{\rm norm} \big| > 1 \ \mbox{then it is unsuccessful} \end{array}$

10. Measurement instructions

10.1. Precautions

- Do not connect adapter/connectors whose pin depth is not appropriate to the IEEE STD 287
 [5] standard to the travelling standards.
- > Avoid extreme temperature, humidity or pressure changes as well as violent impacts.

10.2. Before the measurements

- > Clean the connectors with dried air and isopropyl alcohol.
- ➢ No initial tests are required.
- > Use the suitable (12 lb-in for N type) torque wrench when connecting the travelling standard.
- It should be allowed to stabilize in a temperature and humidity controlled environment for at least 1 day before commencing measurements.

10.3. Powering of the standard during the measurements

All type of the measurement instruments, which have 220 VAC power suppliers like power meters, have to plug in to power supplier at least 120 minutes before calibration.

10.4. Environmental conditions

- The ambient temperature and humidity must be measured. No corrections have been performed for temperature and humidity effects.
- > At any case, in their respective calibration certificates each laboratory will report about the ambient conditions held at their premises during measurement of the travelling standard.

10.5. Methods of measurement

Each participant institute has made use of its own measurement method. A brief description of the measurement methods used by the participants follows:

<u>SIQ Slovenia</u>: The calibration certificate issued does not provide additional information about the measurement method (the ripple technique) applied. The list of measurement standards used is as follows: N9030B PXA Signal Analyser; 11691D Directional Coupler; M1404N Coaxial Termination; 04191-85300 Short; 778D Directional Coupler; Type BNC (f) Short; 18N50.

The calibration procedure used is: 09069P01/2019-04-01. Calibration was carried out by comparison of values indicated, or set, on the item under calibration, with values of measurands, realized with measurement standards.

<u>EIM/NQIS Greece</u>: The device under test was kept in the laboratory environment for the required time interval prior to the calibration. This time interval was not less than 24 hours. The calibration was conducted according to the "injection technique". A second generator is used in combination with the DUT, connected via a directional bridge or a directional coupler. The second generator injects a signal which has a small fixed frequency offset (for example 10 Hz) from the DUT's output frequency. The difference in frequency should be within the control bandwidth of the level control. The original and reflected signals will add and subtract at a rate of 10 Hz. The resultant signal is detected with a spectrum analyser in 'zero span' mode, connected to the third port of the bridge / coupler. The variation in amplitude with time is observed using the cursors to measure the maxima and minima. With the DUT replaced by an open and a short, a reference level can also be measured. Configuring the Spectrum Analyser to report in units of voltage, the Voltage

Reflection Coefficient can be calculated as: $\rho_I = Z_{DUT}/Z_{max}$. Where Z_{DUT} = half (max – min) signal with DUT connected and Z_{max} = mean signal with Open & Short connected.

For the calibration the following standards have been used:

- 1. Generator HP 83630A (D1/0051)
- 2. Spectrum Analyser Hewlett Packard 8566
- 3. Directional bridge Hewlett Packard 86205A
- 4. Directional coupler Krytar 0995-0098
- 5. Female open (S/N: 2157, D1/1269)
- 6. Female short (S/N: 2300, D1/1269)
- 7. Cable 11500C
- 8. Cable 11500D (Δ1/1285)
- 9. Cable 11500E (Δ1/1286)
- 10. Cable 11500F
- 11. Adapter 3.5mm (f-f) (Δ1/3208)
- 12. Adapter N(m)-SMA(f) (Δ 1/2067)
- 13. Adapter N(m-m) 1250-1475 (D1/1871)

<u>METAS Switzerland</u>: The output Voltage Reflection Coefficient was measured using a passive reflectometer method. The different states of the switchable reflect standard were characterized using a calibrated Network Analyser.

The source match measuring station is used for the calibration of the complex source match of RF generators with a nominal impedance of 50Ω . A direct measurement technique called reflectometer is used in which the output power signal of the generator under test is simultaneously the test signal. The benefit here is that the generator's output stage, which typically contains a control circuit to stabilise the level, is not influenced by an external test signal as it is the case with the active injection test method.

Figure 2 shows the source match measurement setup. Using a switchable reflect standard with different characterized states, the device under test is terminated into different known load impedances ΓL while the resulting RF power P_{PM} is measured simultaneously at the directional coupler output. Based on the quantities that are known - measured power and the characterization data of the switchable reflect standard - the desired reflection coefficient Γ_{DUT} is determined.

Verification is done by inserting a characterized attenuator between the DUT and the switchable reflect standard. The de-embedded verification results must be consistent with the results. Measurements of the power level P_{PM} are performed for each state of the switchable reflect standard.

Figure 2. Measurement setup used by METAS

The measured data is analysed with the program 'METAS Source Match Tools' to determine the source match of the generator Γ_{DUT} and the power level P_{DUT} . The program uses an over-determined non-linear regression algorithm to determine the unknown quantities. Known input quantities are the measured power levels P_{PM} and the characterization data of the switchable reflect standard (S₁₁, S₂₁, S₁₂ and S₂₂ per state) and power meter (Γ_{PM}).

For the measurements the METAS internal software 'Source Match Measurement Switched Mismatches' has been used.

For the calculation of the results including uncertainties the METAS internal software 'METAS Source Match Tools' has been used.

For the analysis of the results the METAS software 'METAS VNA Tools II' has been used.

The standards used in the measurement are as follows: (i) switchable Reflect Standard, selfmade at METAS, s/n none, S-parameter traceable to reflection standards; (ii) Signal Analyser, Rohde & Schwarz, FSW67, s/n 103220, linearity traceable to a calibrated step attenuator.

The uncertainty budget is at the end of this report. 'METAS UncLib' has been used for calculation of the uncertainties. This way uncertainties are traced back to the primary realisation of SI traceability for the S-parameters.

<u>TUBITAK UME Turkey</u>: For measurement of the voltage reflection coefficient (VRC) of the travelling standard, the effect of the level control was taken into account. So, an auxiliary signal generator was used which transmits a wave with a slightly offset carrier frequency into the travelling standard.

The difference in frequency should be within the control bandwidth of the level control. A directional coupler couples a part of these outgoing superimposed waves to the spectrum analyser. The frequency offset results in a beat of the superimposed outgoing waves. The VRC value is the ratio between the maximum and minimum amplitude of the beat.

10 MHz

Figure 3. Measurement setup used by TUBITAK UME

The measurement set-up used for the comparison on voltage reflection coefficient (VRC) of an RF source is given in Figure 3 above. As seen from figure, the travelling standard, auxiliary signal generator and spectrum analyser were connected to the test, RF input and coupled ports of the directional coupler respectively. 10 MHz of all instruments were locked.

At the first stage, the travelling standard was set to test level of 0 dBm at different frequencies. The auxiliary signal generator was set to 100 Hz less than test frequency value and to the unmodulated minimum power level. The spectrum analyser was set to Zero span, same test frequency and level. The scale of spectrum analyser was linear level. The voltage of the signal was measured by varying the level in order to get line in the middle on the display of the spectrum analyser.

At the second stage, the travelling standard was disconnected from the directional coupler in order to have an open test port. The level of the auxiliary signal generator was increased until to get same voltage value measured at the first stage.

Finally, the travelling standard was connected to the directional coupler. The travelling standard was set to the desired power level and frequency. The auxiliary signal generator was set to the power level measured at the stage two and frequency of that minus 100 Hz. The maximum voltage V_{max} and minimum voltage V_{min} were read from the sinusoidal figure displayed on the spectrum analyser.

<u>NIS Egypt</u>: Measurement of Voltage Reflection Coefficient (VRC) of the signal generator is carried on using the injection method technique shown in Figure 4 [6-Fig. 2]. A short description is as follows: an HP synthesized CW generator model 83712A (DUT) feeds 0 dBm output power at frequencies (50 MHz, 2 GHz, 8 GHz, 12 GHz, 15 GHz and 18 GHz) alternatively to Keysight directional bridge model 86205A and Keysight directional coupler model 773D, both covering a part of the stated frequency range. For frequency range from 50MHz to 2GHz port 1 of the directional bridge is connected with DUT HP synthesized CW generator, port 2 is injected by reference R&S signal generator, port 3 is connected with R&S spectrum analyser. For frequency range from 2 GHz to 18 GHz the output port of the directional coupler is injected by reference R&S signal generator, input port is connected with DUT HP synthesized CW generator, coupled port is connected with R&S spectrum analyser. The VRC is given by:

$$|\Gamma| = \frac{Z_{UUT}}{Z_{Max}}$$

Where Z_{DUT} = half (max-min) signal with DUT connected and Z_{Max} = mean signal with open & short connected at test ports (port 2 of directional bridge, input port of directional coupler) according to the stated frequency. The spectrum analyser is adjusted at zero span (time-domain mode) and a frequency offset of 100 Hz is added for DUT and reference generators in order to detect the maximum and minimum signal. The contributions to VRC measurement uncertainty budget are Type A (repeatability of the VRC measurements), and Type B, the return loss of 86205A bridge or 773D coupler directivity, the test port match and the uncertainty with which their values are known, linearity of R&S spectrum analyser, and R&S Signal generator uncertainty [7]. The uncertainty of directivity and test port match are calculated according to [8].

Figure 4. Measurement setup used by NIS

<u>GUM Poland</u>: The measurements have been made using a directional coupler with the DUT connected to the 'Input' port and a sliding short connected to the 'Test' port. The DUT's VRC magnitude was derived from the maximum and minimum values indicated by the power meter (with the power sensor connected to the 'Incident' port of the coupler). The sliding short used for these measurements is a USSR-made type HK3-1 element, of not the best quality, whose Reflection Coefficient in magnitude is usually less than unity. Due to this fact the short's VRC at the certain positions (where readings on the power meter were either a minimum or a maximum) were measured using a VNA, calibrated with the calibration kit listed below. Thus, the actual Reflection Coefficient of the sliding short and its uncertainties were taken into account in the DUT's VRC calculations and in the final uncertainty budget.

The standards used in the measurements were: (i) directional coupler Hewlett Packard, model 11692D, serial number 1212A04401; (ii) power sensor Hewlett Packard, model 8481D, serial number 3318A07727; (iii) power meter Hewlett Packard, model 438A, serial number 3017U01578; (iv) Vector Network Analyser Agilent, model E8364B, serial number MY43030326; (v) calibration kit Agilent, model 85054B, serial number MY39200148.

<u>INTA Spain</u>: INTA made use of the ripple technique. By definition, it is a scalar method which relies on the interaction between two signals, the main signal reflected by high reflection (a short) and the signal reflected at the generator's output connector. The two signals are separated by means of a directional device (a coupler) and their path difference increased by means of an airline. The interaction between the two signals, as a consequence of the path difference introduced by the airline, gives rise to a ripple signal whose peak-to-peak value (divided by two) indicates the magnitude of the output VRC of the generator under test.

Main sources of uncertainty are the corrections made on the peak-to-peak value, which depend on the known Reflection Coefficient of the short and the Insertion Losses of the directional coupler and of the airline. Additional sources of uncertainty are the Directivity and Reflection Coefficient

of the airline, which may interact with the main signals so that its effect must be accounted for in the uncertainty budget. Also the uncertainty associated to the algorithm for computation of the envelope of the ripple signal does play a role, since determination of the mean value and of the peak-to-peak value are dependent on it.

A further refinement of the method consists in filtering the original ripple signal (in which two different ripple contributions with different 'rates of variation' are normally present) in order to obtain two ripples with a single 'rate of variation' each. The two different rates are due to the presence of two different paths for the incoming signals: the directional coupler in one measurement setup and the coupler plus the airline in the second setup.

10.6. Reported ambient conditions during measurements

The participants have reported the following ambient conditions held during measurement of the travelling standard:

Acronym of Institute	Country	Temperature	Relative Humidity
SIQ	Slovenia	(23 ± 2) °C	(50 ± 20) %
EIM/NQIS	Greece	$22.6~^\circ C \leq T^2 \leq 24.0~^\circ C$	$65\% \leq HR^3 \leq 79\%$
METAS	Switzerland	(23 ± 1) °C	(45 ± 10) %
NIS	Egypt	(23 ± 1) °C	(45 ± 1) %
TUBITAK UME	Turkey	(23 ± 1) °C	(45 ± 15) %
GUM	Poland	(23 ± 1) °C	(44 ± 2) %
INTA	Spain	(23 ± 1) °C	< 70 %

Table 5. Measurement ambient conditions

11. Measurement uncertainty

The uncertainty of measurement must be calculated according to Ref. [2] for a confidence level of 95.45% (in the case of infinite degrees of freedom or an assumed Gaussian probability density function, this corresponds to a coverage factor k=2).

All contributions to the measurement uncertainty, or at least the most relevant ones, should be listed in the measurement report or calibration certificate submitted by each participant.

Each laboratory has declared its measurement uncertainty budget where all (or at least the most relevant) contributions are stated and its combination briefly described, according to the format given in Annex A of the intercomparison protocol.

² Measurement uncertainty ± 0.2 °C

³ Measurement uncertainty ± 2%

Comparison on Voltage Reflection Coefficient (VRC) of an RF Source – Final Report

12. Reporting of results

The results have been sent to the pilot laboratory. Each measurement report or calibration certificate contains information such as:

- > Details of participant laboratory.
- > The date of the measurements.
- > A brief description of the measurement method and system used.
- > The measurement standards used in the comparison measurements.
- > Software used in the comparison measurements (if used).
- > The environmental conditions during the measurements:
 - Ambient Temperature
 - Relative Humidity
- Results of measurement; the measurement results have been provided according to the Annex A of the intercomparison protocol.
- > A statement of traceability.
- > Model function of measurement with explanations of the symbols.
- > Expanded measurement uncertainty, estimated for a confidence level of 95.45%.

13. Measurement results of the participant laboratories

The pilot laboratory is responsible for the preparation of this Analysis Report.

13.1. Measurement of scalar Reflection Coefficient

Laboratory	VRC (magnitude)	Uncertainty (±)
TUBITAK UME	0.052	0.095
METAS	0.0418	0.0043
INTA	0.0445	0.0090
EIM/NQIS	0.0591	0.0092
SIQ	0.044	0.020
NIS	0.043	0.026

Reflection Coefficient (VRC) @ 50 MHz

Reflection Coefficient (VRC) @ 2 GHz

Laboratory	VRC (magnitude)	Uncertainty (±)
TUBITAK UME	0.034	0.099
METAS	0.0386	0.0049
GUM	0.0290	0.0069
INTA	0.040	0.012
EIM/NQIS	0.0377	0.0094
SIQ	0.022	0.049
NIS	0.044	0.064

Reflection Coefficient (VRC) @ 8 GHz

Laboratory	VRC (magnitude)	Uncertainty (±)
TUBITAK UME	0.038	0.098
METAS	0.0367	0.0074
GUM	0.040	0.015
INTA	0.070	0.024
EIM/NQIS	0.089	0.016
SIQ	0.055	0.042
NIS	0.062	0.063

Reflection Coefficient (VRC) @ 12 GHz

Laboratory	VRC (magnitude)	Uncertainty (±)
TUBITAK UME	0.134	0.083
METAS	0.099	0.011
GUM	0.116	0.013
INTA	0.103	0.033
EIM/NQIS	0.170	0.019
SIQ	0.112	0.037
NIS	0.145	0.064

Reflection Coefficient (VRC) @ 15 GHz

Laboratory	VRC (magnitude)	Uncertainty (±)
TUBITAK UME	0.099	0.086
METAS	0.102	0.012
GUM	0.102	0.019
INTA	0.096	0.033
EIM/NQIS	0.175	0.019
SIQ	0.10	0.11
NIS	0.125	0.091

Reflection Coefficient (VRC) @ 18 GHz

Laboratory	VRC (magnitude)	Uncertainty (±)
TUBITAK UME	0.057	0.094
METAS	0.055	0.013
GUM	0.043	0.023
INTA	0.055	0.025
EIM/NQIS	0.110	0.013
SIQ	0.07	0.15
NIS	0.069	0.092

13.2. Measurement of phase

Only one of the participant laboratories, METAS Switzerland, has been able to provide measured phase of the complex Reflection Coefficient. Although it can't take part in the comparison exercise, we reproduce here the results obtained for the phase of the parameter under test.

Frequency	VRC (phase, °)	Uncertainty (± °)
50 MHz	-55.4	5.7
2 GHz	-35.7	7.3
8 GHz	-87	13
12 GHz	-81.8	8.1
15 GHz	15.0	9.4
18 GHz	175	16

Phase of Reflection Coefficient (VRC) as measured by METAS

14. Assigned Value and Figure of Merit of the participants

Applying the statistical tools seen in the precedent section, the following results are obtained. In all graphs, the calculated Assigned Values are indicated with coloured horizontal lines: Comparison Assigned Value (x_{AV}) is not shown for the sake of simplicity. The red solid lines represent the combination of the Assigned Value plus or minus its associated uncertainty $U(x_{AV})$.

Those participant laboratories considerer outliers have not been taken into account in the determination of the Assigned Values. They are shown in yellow for clarity of inspection.

14.1. Measurement of scalar Reflection Coefficient

Reflection	Coefficient	(VRC)	@ 50	MHz

Laboratory	VRC (magnitude)	U (±)	Outlier (Yes/No)	Assigned Value	U (±)	Enorm
TUBITAK UME	0.052	0.095	Yes⁴	0.0424	0.0038	0.10
METAS	0.0418	0.0043	No	0.0424	0.0038	0.10
INTA	0.0445	0.0090	No	0.0424	0.0038	0.22
EIM/NQIS	0.0591	0.0092	Yes ⁴	0.0424	0.0038	1.68
SIQ	0.044	0.020	No	0.0424	0.0038	0.08
NIS	0.043	0.026	No	0.0424	0.0038	0.02

⁴ TUBITAK UME and EIM/NQIS have not been taken into account in the determination of the Assigned Value

Comparison on Voltage Reflection Coefficient (VRC) of an RF Source - Final Report

Laboratory	VRC (magnitude)	U (±)	Outlier (Yes/No)	Assigned Value	U (±)	Enorm
TUBITAK UME	0.034	0.099	No	0.0361	0.0035	0.02
METAS	0.0386	0.0049	No	0.0361	0.0035	0.42
GUM	0.0290	0.0069	No	0.0361	0.0035	0.92
INTA	0.040	0.012	No	0.0361	0.0035	0.29
EIM/NQIS	0.0377	0.0094	No	0.0361	0.0035	0.16
SIQ	0.022	0.049	Yes⁵	0.0361	0.0035	0.29
NIS	0.044	0.064	No	0.0361	0.0035	0.12

Reflection Coefficient (VRC) @ 2 GHz

⁵ SIQ has not been taken into account in the determination of the Assigned Value

Laboratory	VRC (magnitude)	U (±)	Outlier (Yes/No)	Assigned Value	U (±)	Enorm
TUBITAK UME	0.038	0.098	No	0.0467	0.0058	0.08
METAS	0.0367	0.0074	No	0.0467	0.0058	1.06
GUM	0.040	0.015	No	0.0467	0.0058	0.43
INTA	0.070	0.024	No	0.0467	0.0058	0.92
EIM/NQIS	0.089	0.016	No	0.0467	0.0058	2.48
SIQ	0.055	0.042	No	0.0467	0.0058	0.20
NIS	0.062	0.063	No	0.0467	0.0058	0.24

Reflection Coefficient (VRC) @ 8 GHz

Laboratory	VRC (magnitude)	U (±)	Outlier (Yes/No)	Assigned Value	U (±)	Enorm
TUBITAK UME	0.134	0.083	No	0.1070	0.0079	0.33
METAS	0.099	0.011	No	0.1070	0.0079	0.59
GUM	0.116	0.013	No	0.1070	0.0079	0.60
INTA	0.103	0.033	No	0.1070	0.0079	0.11
EIM/NQIS	0.170	0.019	Yes ⁶	0.1070	0.0079	2.99
SIQ	0.112	0.037	No	0.1070	0.0079	0.13
NIS	0.145	0.064	No	0.1070	0.0079	0.59

Reflection Coefficient (VRC) @ 12 GHz

⁶ EIM/NQIS has not been taken into account in the determination of the Assigned Value

Comparison on Voltage Reflection Coefficient (VRC) of an RF Source - Final Report

Laboratory	VRC (magnitude)	U (±)	Outlier (Yes/No)	Assigned Value	U (±)	Enorm
TUBITAK UME	0.099	0.086	No	0.1013	0.0096	0.02
METAS	0.102	0.012	No	0.1013	0.0096	0.05
GUM	0.102	0.019	No	0.1013	0.0096	0.01
INTA	0.096	0.033	No	0.1013	0.0096	0.16
EIM/NQIS	0.175	0.019	Yes ⁷	0.1013	0.0096	3.53
SIQ	0.10	0.11	No	0.1013	0.0096	0.04
NIS	0.125	0.091	Yes ⁷	0.1013	0.0096	0.26

Reflection Coefficient (VRC) @ 15 GHz

⁷ EIM/NQIS and NIS have not been taken into account in the determination of the Assigned Value

Comparison on Voltage Reflection Coefficient (VRC) of an RF Source - Final Report

Laboratory	VRC (magnitude)	U (±)	Outlier (Yes/No)	Assigned Value	U (±)	Enorm
TUBITAK UME	0.057	0.094	No	0.053	0.010	0.04
METAS	0.055	0.013	No	0.053	0.010	0.13
GUM	0.043	0.023	No	0.053	0.010	0.40
INTA	0.055	0.025	No	0.053	0.010	0.07
EIM/NQIS	0.110	0.013	Yes ⁸	0.053	0.010	3.40
SIQ	0.07	0.15	No	0.053	0.010	0.13
NIS	0.069	0.092	No	0.053	0.010	0.17

Reflection Coefficient (VRC) @ 18 GHz

⁸ EIM/NQIS has not been taken into account in the determination of the Assigned Value

15. Evaluation of results

15.1. Evaluation of the participation of laboratories

The laboratory responsible for the organisation of this intercomparison exercise makes the following comments and remarks:

- □ As regards the homogeneity of the intercomparison results in terms of measurement uncertainty, the uncertainties of the participants are comparable. In principle, it is this homogeneity in the measurement uncertainties what makes this exercise feasible for analysis by consensus. Moreover, the existence of a small number of outliers reinforces our opinion (7 of a global amount of 41 measuring points analysed). These anomalous results, by definition of the method of analysis, have been excluded from the calculation of the Assigned Value. Those participants considered 'anomalous' should perhaps review their measurement procedures and the accuracy of the standards used in this exercise, even if they obtain a normalized error less than unity.
- A comparison between participants based exclusively on the normalized error obtained would be clearly biased due to the lack of homogeneity among participants. Those laboratories with larger measurement uncertainties can get a normalized error smaller than other participants with better measurement capability. Also those participants considered as outliers may exhibit a reduced normalized error for the same reasons, even though they have not been taken into account in the determination of the Assigned Value.
- Considering only the figures of merit obtained by the participants, the results of the comparison exercise are considered satisfactory in view of the measurement results provided by the laboratories. Most participants obtain a normalized error less than unity for the required measurement frequencies.
- Each participant should take into account the number of measurements for which it has obtained a normalized error greater than unity, and perhaps revise their measurement procedures accordingly, in order to detect the origin of the observed discrepancies. When necessary, the appropriate corrective and / or preventive actions should be taken according to its internal QA system or to the national accreditation body in each case.
- In view of the overall results (which are more thoroughly analysed in the following paragraph), the results of the comparison exercise is considered successful by the organiser.
- □ However, as a final remark about the number of outliers (7 outliers among 41 measurement points analysed, or a ratio of 17 percent), the detection of 'anomalous' participants is certainly method-dependent. A different method for determination of outliers could be applied and the results might be different. Even the Assigned Value of the comparison could be affected. Nevertheless, the method based on the Median and on the 3·MAD criteria is usually considered as appropriate for the analysis of results in intercomparisons. One of its drawbacks is that it works well under the assumption of a Gaussian population of analysed data, which is not often the case with a reduced number of participants, or when not all participants provide measurement results for all frequencies required.

15.1.1. Measurement of scalar Reflection Coefficient

The total number of measurement points is 41. The number of normalized errors exceeding unity is 6, almost 15 percent. The number of measurement points for which the normalized error is comprised between 0.5 and unity is 5, or a percentage of 12. The ratio of normalized errors less than 0.5 (30 values representing 73% of occurrences) shows a very good agreement with respect to the Assigned Value of the comparison. For 85% of occurrences the normalized error is acceptable, 35 out of 41 measurement points.

Measurement of VRC (magnitude)

We show below the number of measurement points for which each participant has obtained normalized errors: (i) above unity (not acceptable); (ii) between 0.5 and unit (acceptable); and (iii) below 0.5 (excellent).

15.1.2. Measurement of scalar Reflection Coefficient

Laboratory	Enorm > 1 (not acceptable)	0.5 < Enorm ≤ 1 (acceptable)	Enorm ≤ 0.5 (excellent)
TUBITAK UME			6
METAS	1	1	4
GUM		2	3
INTA		1	5
EIM/NQIS	5		1
SIQ			6
NIS		1	5

15.2. Drift of the travelling standard

An analysis based on the existing characterizations made by the RF & Microwaves Laboratory follows. Measurements were made at the beginning and at the conclusion of comparison exercise. With these measurements INTA participates in the determination of the Assigned Value of the comparison, made by consensus among the participants.

As a figure of merit the time drift has been computed for the RF source under test for a time period covering a time span which can be comparable to the duration of the comparison exercise. To do this the following expression has been used:

$$\sqrt{(b \cdot T)^2 + \frac{\sum_{i=1}^{N} (X_i - \langle X_i \rangle)^2}{N-2}}$$

Where:

- □ b is the slope of the least-squares fitting (or trend line) made for the set of N values measured.
- T is the time period along which the potential time drift is estimated, so that b·T represents an indication of the time drift experienced by the parameters under test from the date of the last calibration at INTA to the date estimated for the next re-calibration. We consider the potential time drift experienced until 31 January 2020, in order to cover a time period comparable to the duration of the comparison exercise.
- Xi are the values of the measured parameter of the RF source (scalar Reflection Coefficient) along time.
- <Xi> = a+b·ti are the estimated values over the least-squares trend line, computed on the same dates as the measurement points on the time axis, ti. a it is the y-intercept.
- □ N is the number of measurements.

|--|

Frequency	Scatter Δ^9	Change in slope ¹⁰	Temporary drift ¹¹	Uncertainty ¹²
2 GHz	0.0000	-0.0005	0.0005	0.012
8 GHz	0.0019	-0.0026	0.0032	0.024
12 GHz	0.0002	0.0018	0.0018	0.033
15 GHz	0.0000	-0.0005	0.0005	0.033
18 GHz	0.0001	0.0009	0.0009	0.025

¹² Expanded uncertainty associated to the values measured by the pilot laboratory

⁹ Scatter of the measured values

¹⁰ Increase / decrease with the slope of the least-square fitting curve, evaluated on January 31st, 2020

¹¹ Temporaty drift during a period of time comparable to the duration of the intercomparison exercise. It is obtained as the root-sum-of-squares of contributions (4) and (5). It should be less than (or of the same order of magnitude as) the measurement uncertainty

15.3. 'Closing-of-loop' criteria

Under conditions of stability of the traveling standard, as it is the present case, the 'Closing-of-Loop' Index (CoL) is the defined as the following normalized error:

$$CoL = \frac{|x_I - x_F|}{\sqrt{U^2(x_I) + U^2(x_F)}}$$

Where:

 \Box x₁ is the initial measured value, at the beginning of the measurement loop

 \Box x_F is the final measured value, at the end of the measurement loop

 \Box U(x₁) is the initial measurement uncertainty, at the beginning of the measurement loop

 \Box U(x_F) is the final measurement uncertainty, at the end of the measurement loop

In our case, the initial and final characterization of the traveling standard made by the pilot laboratory will be taken. These measurements were carried out before the measurements made by the participants laboratories and at the conclusion of the measurement loop, in February 2017 and March 2019, respectively.

Alternatively, and in order to include all the information available for the traveling standard, the generalized normalized error can be defined for any number of points (in principle it converges when applied to a stable piece of equipment with many calibrations over time):

$$CoL = \frac{\sum_{i=1}^{N} |x_i - \overline{X}|}{(N-1) \cdot \sqrt{\sum_{i=1}^{N} U^2(x_i)}}$$

The above criteria shall be applied to all the parameters under test of an intercomparison exercise. Its value should be less than unity in all cases.

|--|

Frequency	'Closing-of-loop' Index
50 MHz	0.08
2 GHz	0.06
8 GHz	0.09
12 GHz	0.05
15 GHz	0.01
18 GHz	0.03

16. Final report of the comparison

The pilot laboratory is responsible for the preparation of this Analysis Report.

The Draft A of the comparison report was sent to the participants for discussion, amendment if applicable, and eventually for approval. This draft version was confidential and no identification of the participants was made.

All laboratories unanimously agreed to identify themselves and thus to give up confidentiality.

The participants had two weeks to send their comments about Draft A Report. Once all amendments have been taken into account, and after final approval by all participants, this Draft B Report becomes the Final Report.

17. Confidentiality

The results and/or the Final Report will not be revealed to third parts without the written permission of all the participant laboratories.

It is beforehand expressed the initial intention of INTA to eventually present the comparison results to the Spanish Accreditation Body (ENAC) in order to show competence in the measurement field here concerned, according to the requirements of ISO/IEC 17025:2017. At any case, ENAC will not be treated as any other third part and no permission from the participant laboratories will be necessary.

Once the comparison is finished, and in case that all seven participants agree, the results could be published or presented at Scientific Forums.

Eventually, this analysis document will be sent to MSU and EURAMET as the final report for the comparison project. Final decision about making it public or even accessible via the web page will be thus made by MSU and EURAMET.

17.1. Identification of laboratories

The measurement results contained in Draft A of the Final Report were published without identification of the participant laboratories. The correspondence between each set of data and the participants were only known by the pilot laboratory. Each laboratory was informed separately about the identification of its own data.

After all seven participants agreed to be identified and <u>expressly resigned from the confidentiality</u> <u>commitment of the intercomparison exercise</u>, the Final Report is now published with identification of laboratories.

Resigning from confidentiality <u>required the written consent of all seven participants</u>, and would not have been applicable in case any of them did not agree, or in case the pilot laboratory did not receive the corresponding written permissions previously to the issuing of the Final Report.

18. Acknowledgement

The pilot of the intercomparison wishes to thank all the participant laboratories for their willingness to take part in this exercise, as well as for the compliance with the deadlines in the transport schedule and in the measurement slots. Also for the care taken in the handling of the travelling standard.

This work was supported by the project 15RPT01 RFMicrowave. This project has received funding from the EMPIR programme co-financed by the Participating States and from the European Union's Horizon 2020 research and innovation programme.

19. References and applicable documentation

- [1] CCEM Guidelines for Planning, Organizing, Conducting and Reporting Key, Supplementary and Pilot Comparisons, 2007 (available on the BIPM website: <u>http://www.bipm.org/utils/common/pdf/CC/CCEM/ccem_guidelines.pdf</u>
- [2] Evaluation of measurement data Guide to the Expression of Uncertainty in Measurement (GUM), JCGM 100:2008, First edition, September 2008 (available on the BIPM website: <u>http://www.bipm.org/utils/common/documents/jcgm/JCGM_100_2008_E.pdf</u>
- [3] UNE-EN ISO/IEC 17043:2010: "Conformity assessment General requirements for proficiency testing", International Standardization Organization", 2010
- [4] International Standard ISO 13528: "Statistical Methods for Use in Proficiency Testing by Interlaboratory Comparison". Reference number ISO 13528:2015(E)
- [5] IEEE 287-2007, IEEE Standard for Precision Coaxial Connectors (DC to 110 GHz), 2007
- [6] P. Roberts, "Measuring Output VSWR for an Active Levelled Source", Measurement Science Conference, 2008
- [7] P. Roberts and P. Bunyan, "Source Match Measurement for a Levelled Generator", Fluke Precision Measurement Ltd, PCAR & PB, September 2006
- [8] J. Hurll, "Uncertainty and Confidence in Measurements", chapter 3, Microwave Measurements, 3th edition, The Institution of Engineering and Technology, 2007

20. Annex I – Measurement report from TUBITAK UME Turkey

COMPARISON ON VOLTAGE REFLECTION COEFFICIENT (VRC) OF AN RF SOURCE

TUBITAK UME REPORT

EMPIR 15RPT01 RFMICROWAVE

CONTENTS

TUBITAK UME REPORT	3
DELIVERY NOTE - FOR TRANSPORTATION OF THE TRAVELLING STAN	DARD9

TUBITAK UME REPORT

1. PARTICIPANT INFORMATION

Laboratory Name:	TUBITAK UME
Name of contact person:	Aliye Kartal Dogan, Murat Celep
Telephone number:	+90 262 6795000 -4500-4555
Fax:	+90 262 6795001
E-mail:	murat.celep@tubitak.gov.tr, aliye.dogan@tubitak.gov.tr
Address:	PO 54 41470 Gebze Kocaeli

2. MEASUREMENT DATE:

3. ENVIRONMENTAL CONDITIONS

Temperature	:	(23 ±1) °C
Relative Humidity	:	(45±15)%

4. STANDARDS USED IN MEASUREMENT

Instrument Name	Manufacturer	Type / Model	Serial Number	Traceability
Signal Generator	Agilent	E8257D	MY45140783	TÜBİTAK UME
Spectrum Analyzer	Agilent Technologies	8565EC	4208A00737	TÜBİTAK UME
Directional Coupler	Hewlett Packard	HP86205A	3140A01797	TÜBİTAK UME
Directional Coupler	Agilent	773D	MY52180258	TÜBİTAK UME

5. DESCRIPTION OF MEASUREMENT METHOD

The voltage reflection coefficient (VRC) measurement of the travelling standard, the effect of the level control was taken into account. So, an auxiliary signal generator is used which transmits a wave with a slightly offset carrier frequency into the travelling standard.

The difference frequency should be within the control bandwidth of the level control. A directional coupler couples a part of these outgoing superimposed waves to the spectrum analyzer. The frequency offset, results in a beat of the superimposed outgoing waves. The VRC value is the ratio between the maximum and minimum amplitude of the beat.

The measurement set-up used for the comparison on voltage reflection coefficient (VRC) of an RF source is given in Figure 1. As seen from figure, the travelling standard, auxiliary signal generator and spectrum analyzer were connected to the test, RF input and coupled ports of the directional coupler respectively. 10 MHz of all instruments were locked.

At the first stage, the travelling standard was set to test level of 0 dBm at different frequencies. The auxiliary signal generator was set to 100 Hz less than test frequency value and to the unmodulated minimum power level. The spectrum analyzer was set to Zero span, same test frequency and level. The scale of spectrum analyzer was linear level. The voltage of the signal was measured by varying the level in order to get line in the middle on the display of the spectrum analyzer.

At the second stage, the travelling standard was disconnected from the directional coupler in order to have a open test port. The level of the auxiliary signal generator was increased until to get same voltage value measured at the first stage.

Finally, the travelling standard was connected to the directional coupler. The travelling standard was set to the desired power level and frequency. The auxiliary signal generator was set to the power level measured at the stage two and frequency of that minus 100 Hz. The maximum voltage V_{max} and minimum voltage V_{min} were read from the sinusoidal figure displayed on the spectrum analyzer.

6. MEASUREMENT RESULTS:

	Voltage Reflection Coefficient of travelling standard @ 0 dBm						
Frequency	VRC Magnitude	Uncertainty (CL = 95.45%)	VRC Phase (if measured)	Uncertainty (CL = 95.45%)			
50 MHz	1,11	0,21					
2 GHz	1,07	0,21					
8 GHz	1,08	0,21					
12 GHz	1,31	0,22					
15 GHz	1,22	0,21					
18 GHz	1,12	0,21					

7. UNCERTAINTY BUDGET

7.1. Voltage Reflection Coefficient (VRC) measurement uncertainty budget

Model function	$: VRC = \frac{Vmax + \delta Reproducibility + \delta Resolution + \delta spec.analyzer + \delta directivity}{Vmin + + \delta Reproducibility + \delta Resolution + \delta spec.analyzer + \delta directivit}$
Frequency	: 50 MHz
Output Level (CW)	: 0 dBm

Definition of contribution	Expected Value	Standard Uncertainty	Distribution Function	Sensitivity Coefficient	Uncertainty contribution
	Xi	u(x i)		Ci	u(y _i)
Vmax measurements	42,55 mV	0,153 mV	Normal	0,0260	0,0040
Vmin measurements	38,47 mV	0,132 mV	Normal	-0,0287	-0,0038
Reproducibility of measurements		0,0100	Normal	1,106	0,0006
Resolution of spectrum analyzer		0,0014978	Rectangular	1,106	0,0009
Effect of spectrum analyzer		0,005773	Normal	1,106	0,0064
Effect of directivity of directional coupler		0,100	Normal	1,106	0,1000
Measured Value	1,11	Combined Uncertainty			0,100
		Expanded Uncertainty (CL = 95.45%)			0,201

Model function

 $: VRC = \frac{Vmax + \delta Reproducibility + \delta Resolution + \delta spec.analyzer + \delta directivity}{Vmin + + \delta Reproducibility + \delta Resolution + \delta spec.analyzer + \delta directivity}$

Frequency : 2 GHz

Output Level (CW) : 0 dBm

Definition of contribution	Expected Value	Standard Uncertainty	Distribution Function	Sensitivity Coefficient	Uncertainty contribution
	22 EZ m\/	0.151 m	Normal		
vmax measurements	22,57 mv	0,151 mV	Normai	0,0476	0,0072
Vmin measurements	21,01 mV	0,151 mV	Normal	-0,0511	-0,0077
Reproducibility of measurements		0,0100	Normal	1,074	0,0006
Resolution of spectrum analyzer		0,001497801	Rectangular	1,074	0,0009
Effect of spectrum analyzer		0,005773063	Normal	1,074	0,0062
Effect of directivity of directional coupler		0,100	Normal	1,074	0,1000
Measured Value	1,07	Combined Uncertainty			0,101
		Expande	0,202		

Model function

 $: VRC = \frac{Vmax + \delta Reproducibility + \delta Resolution + \delta spec.analyzer + \delta directivity}{Vmin + + \delta Reproducibility + \delta Resolution + \delta sp} \quad analyzer + \delta directivity$

Frequency : 8 GHz Output Level (CW) : 0 dBm

Definition of	Expected Value	Standard Uncertainty	Distribution Function	Sensitivity Coefficient	Uncertainty contribution
contribution	Xi	u(xi)	T unction	Ci	u(y _i)
Vmax measurements	19,68 mV	0,120 mV	Normal	0,0549	0,0066
Vmin measurements	18,21 mV	0,145 mV	Normal	-0,0593	-0,0086
Reproducibility of measurements		0,0100	Normal	1,081	0,0006
Resolution of spectrum analyzer		0,001497801	Rectangular	1,081	0,0009
Effect of spectrum analyzer		0,005773063	Normal	1,081	0,0062
Effect of directivity of directional coupler		0,100	Normal	1,081	0,1000
Measured Value	1,08	Combined Uncertainty			0,101
		Expanded Uncertainty (CL = 95.45%)			0,202

Model function

 $: VRC = \frac{Vmax + \delta Reproducibility + \delta Resolution + \delta spec.analyzer + \delta directivity}{Vmin + + \delta Reproducibility + \delta Resolution + \delta spec.analyzer + \delta directivity}$

Frequency : 12 GHz

Output Level (CW) : 0 dBm

Definition of contribution	Expected Value <i>x</i> i	Standard Uncertainty <i>u(x_i)</i>	Distribution Function	Sensitivity Coefficient _{Ci}	Uncertainty contribution <i>u(y_i)</i>
Vmax measurements	17,00 mV	0,342 mV	Normal	0,0769	0,0263
Vmin measurements	13,00 mV	0,235 mV	Normal	-0,1006	-0,0236
Reproducibility of measurements		0,0100	Normal	1,308	0,0006
Resolution of spectrum analyzer		0,001497801	Rectangular	1,308	0,0009
Effect of spectrum analyzer		0,005773063	Normal	1,308	0,0075
Effect of directivity of directional coupler		0,100	Normal	1,308	0,1000
Measured Value	1,31	Combined Uncertainty			0,106
		Expanded Uncertainty (CL = 95.45%)			0,213

Model function : $VRC = \frac{Vmax + \delta Reproducibility + \delta Resolution + \delta sp}{Vmin + \delta Reproducibility + \delta Resolution + \delta sp}$.analyzer + $\delta directivity$

Frequency

Output Level (CW) : 0 dBm

: 15 GHz

Definition of	Expected Value	Standard Uncertainty	Distribution Function	Sensitivity Coefficient	Uncertainty contribution
contribution	Xi	u(x _i)	T unction	Ci	u(y _i)
Vmax measurements	18,31 mV	0,294 mV	Normal	0,0665	0,0196
Vmin measurements	15,03 mV	0,257 mV	Normal	-0,0811	-0,0208
Reproducibility of measurements		0,0100	Normal	1,219	0,0006
Resolution of spectrum analyzer		0,001497801	Rectangular	1,219	0,0009
Effect of spectrum analyzer		0,005773063	Normal	1,219	0,0070
Effect of directivity of directional coupler		0,100	Normal	1,219	0,1000
Measured Value	1,22	Combined Uncertainty			0,104
		Expanded Uncertainty (CL = 95.45%)			0,218

Model function

 $: VRC = \frac{Vmax + \delta Reproducibility + \delta Resolution + \delta spec.analyzer + \delta directivity}{Vmin + + \delta Reproducibility + \delta Resolution + \delta spec.analyzer + \delta directivity}$

Frequency : 18 GHz

Output Level (CW) : 0 dBm

Definition of	Expected Value	Standard Uncertainty	Distribution Function	Sensitivity Coefficient	Uncertainty contribution
Contribution	Xi	u(x _i)	1 dilotion	Ci	u(y _i)
Vmax measurements	14,87 mV	0,089 mV	Normal	0,0751	0,0067
Vmin measurements	13,31 mV	0,097 mV	Normal	-0,0840	-0,0082
Reproducibility of measurements		0,0100	Normal	1,117	0,0006
Resolution of spectrum analyzer		0,001497801	Rectangular	1,117	0,0009
Effect of spectrum analyzer		0,005773063	Normal	1,117	0,0065
Effect of directivity of directional coupler		0,100	Normal	1,117	0,1000
Measured Value	1,12	Combined Uncertainty			0,101
		Expanded Uncertainty (CL = 95.45%)			0,202

21. Annex II – Measurement report from METAS Switzerland

Measurement Report

Object	RF SN: 3	Signal 339A0022	Generator, 23	Hewlett	Packard,	83712A,
Order	Deter	mination o	f the output vol	tage reflecti	ion coefficient	t.
Applicant	EMPI C2.c ⁻⁷ Chara	R 15RPT0 Task 2.3 acterisatior	1 RFMicrowav	' e signal gene	erators output	VRC
Traceability	The re dards units.	eported me and thus	easurement val to international	ues are trac ly supporte	ceable to nation d realisations	onal stan- of the SI
Date of Measurement	03. to	17.01.20 ⁻	19			

3003 Bern-Wabern, 1 February 2019

For the Measurements	Daniel Stalder
Approved by	Dr Markus Zeier, head of laboratory Laboratory RF and Microwave

.

Parameter	Frequency	Power Level
Output Reflection Coefficient Γ	50 MHz,	1 mW (0 dBm)
	2 GHz,	
	8 GHz,	
	12 GHz,	
	15 GHz,	
	18 GHz	

Extent of the Measurement

Measurement Procedure

Summary

The output voltage reflection coefficient was measured using a passive reflectometer method. The different states of the switchable reflect standard were characterized using a calibrated network analyzer.

Measurement Report

Description

The source match measuring station is used for the calibration of the complex source match of RF generators with a nominal impedance of 50 Ω .

A direct measurement technique called reflectometer is used in which the output power signal of the generator under test is simultaneously the test signal. The benefit here is that the generator's output stage, which typically contains a control circuit to stabilise the level, is not influenced by an external test signal as it is the case with the active injection test method.

Figure 1 shows the source match measurement setup. Using a switchable reflect standard with different

Figure 1: Source Match Measuring Setup

characterized states, the device under test is terminated into different known load impedances Γ_L while the resulting RF power P_{PM} is measured simultaneously at the directional coupler output. Based on the quantities that are known - measured power and the characterization data of the switchable reflect standard - the desired reflection coefficient Γ_{DUT} is determined.

Verification is done by inserting a characterized attenuator between the DUT and the switchable reflect standard. The de-embedded verification results must be consistent with the results.

Measurement Report

Measurement Model

Consider the setup as 2-port with DUT-generator at port 1 and the power sensor at port 2 (see 2). The complexity of the coupler and the composition consisting of switches, delay lines and load/opens/shorts are included in this 2-port model. The 2-port model can be characterized by the s-parameter S_{11} , S_{21} , S_{12} and S_{22} (one set for each reflection state of the switchable reflect standard). This way the system can be easily characterized in the assembled state.

Figure 2: Measurement Model

The relation between the measured power at the power meter and the source match of the DUT is according to (1).

$$P_{PM} = P_{DUT} \cdot \left| \frac{S_{21}}{(1 - \Gamma_{DUT} \cdot S_{11}) \cdot (1 - \Gamma_{PM} \cdot S_{22}) - \Gamma_{DUT} \cdot \Gamma_{PM} \cdot S_{21} \cdot S_{12}} \right|^2$$
(1)

 P_{PM} in (W) is the measured incident power at the power meter / spectrum analyzer.

 Γ_{PM} is the complex reflection coefficient of the power meter / spectrum analyzer.

 Γ_{DUT} is the complex reflection coefficient of the DUT.

 P_{DUT} in (W) is the output power of the DUT delivered to a perfect load.

 S_{XX} are the complex s-parameters of the switchable reflect standard (1 is the input port connected to the DUT, 2 is the output port connected to the power meter).

Measurement and Analysis

Measurements of the power level P_{PM} are performed for each state of the switchable reflect standard. The measured data is analyzed with the program 'METAS Source Match Tools' to determine the source match of the generator Γ_{DUT} and the power level P_{DUT} . The program uses an over-determined non-linear regression algorithm to determine the unknown quantities. Known input quantities are the measured power levels P_{PM} and the characterization data of the switchable reflect standard (S_{11} , S_{21} , S_{12} and S_{22} per state) and power meter (Γ_{PM}).

Software used in the Measurement

- For the measurements the METAS internal software 'Source Match Measurement Switched Mismatches' has been used.
- For the calculation of the results including uncertainties the METAS internal software 'METAS Source Match Tools' has been used.
- For the analysis of the results the METAS software 'METAS VNA Tools II' has been used.

Measurement Conditions

- Ambient temperature: (23 ± 1) °C
- Relative humidity: (45 \pm 10) %
- The devices were thermally balanced for at least 4 h (warm up)
- The result is the mean of \geq 4 measurement series.

Standards used in the Measurement

- Switchable Reflect Standard, self made at METAS, SN: none, S-parameter traceable to reflection standards
- Signal Analyzer, Rohde & Schwarz, FSW67, SN: 103220, Linearity traceable to a calibrated step attenuator

Measurement Report

Measurement Results

Connector Pin-Depth

• Used coupling torque: $(1.36 \pm 0.1) \, \text{N·m}$

Device under test	Pin-depth
RF Signal Generator, Hewlett Packard, 83712A, SN: 3339A00223	$(-53.3 \pm 3.8)\mu m$

The coaxial connectors were cleaned and inspected. The results of the pin-depth measurements comply with the manufacturer specifications.

Output Voltage Reflection Coefficient Γ

Frequency	Γ	Γ	Γ	Г
	$Zr: 50 \Omega$	$Zr: 50 \Omega$	$Zr: 50 \Omega$	Zr: 50 Ω
(MHz)	Mag	U(Mag)	Phase ($^{\circ}$)	U(Phase) ($^{\circ}$)
50	0.0418	0.0043	-55.4	5.7
2000	0.0386	0.0049	-35.7	7.3
8000	0.0367	0.0074	-87	13
12000	0.099	0.011	-81.8	8.1
15000	0.102	0.012	15.0	9.4
18000	0.055	0.013	175	16

The uncertainty budget is at the end of this report. We have used METAS UncLib for the calculation of the uncertainties. This way uncertainties are traced back to the primary realisation of SI traceability for the s-parameters. Listing of each individual uncertainty contribution would lead to a huge table, which would not be useful. In the listings below, the uncertainties are therefore grouped into main categories.

Uncertainty of Measurement

The reported uncertainty of measurement is stated as the combined standard uncertainty multiplied by a coverage factor k=2. The measured value (*y*) and the associated expanded uncertainty (*U*) represent the interval ($y \pm U$) which contains the value of the measured quantity with a probability of approximately 95%. The uncertainty was estimated following the guidelines of the ISO (GUM:1995). The measurement uncertainty contains contributions originating from the measurement standard, from the calibration method, from the environmental conditions and from the object being calibrated. The longterm characteristic of the object being calibrated is not included.

Measurement Report

Uncertainty Budget	Magnitude	50 MHz	Uncertainty Budget	Phase	50 MHz
Value	0 04181		Value	-55 41	
Std Unc	0.00211		Std Unc	2.83	
1195	0.00211		1195	5.66	
000	0.00122		000	5.00	
Description	Unc Component	Unc Percentage	Description	Unc Component	Unc Percentage
VNA Calibration	0.00083	15.30	VNA Calibration	1.13	15.89
Cable Stability	0.00164	60.43	Cable Stability	2.08	53.85
Connector Repeatability	0.00047	5.06	Connector Repeatability	0.65	5.28
VNA Drift	0.00004	0.04	VNA Drift	0.08	0.08
VNA Noise	0.00060	8.03	VNA Noise	0.82	8.43
Type-A of P_PM	0.00041	3.80	Type-A of P_PM	0.57	4.03
VNA Linearity	0.00057	7.35	VNA Linearity	1.00	12.44
Uncertainty Budget	Magnitude	2 GHz	Uncertainty Budget	Phase	2 GHz
Value	0 03855		Value	-35 71	
Std Linc	0.03855		Std Linc	-55.71	
1105	0.00243		1195	3.02 7.24	
000	0.00487		000	7.24	
Description	Unc Component	Unc Percentage	Description	Unc Component	Unc Percentage
VNA Calibration	0.00113	21.50	VNA Calibration	1.68	21.62
Cable Stability	0.00203	69.81	Cable Stability	3.00	68.74
Connector Repeatability	0.00047	3.66	Connector Repeatability	0.69	3.67
VNA Drift	0.00006	0.05	VNA Drift	0.13	0.12
VNA Noise	0.00005	0.04	VNA Noise	0.07	0.04
Type-A of P_PM	0.00011	0.19	Type-A of P_PM	0.14	0.16
VNA Linearity	0.00053	4.74	VNA Linearity	0.86	5.66
Uncertainty Budget	Magnitude	8 GHz	Uncertainty Budget	Phase	8 GHz
oncertainty budget	magintude	0.0112	oncertainty budget	Thuse	0.0112
Value	0.03666		Value	-86.99	
Std Unc	0.00366		Std Unc	6.22	
U95	0.00731		U95	12.44	
Description	Unc Component	Unc Percentage	Description	Unc Component	Unc Percentage
VNA Calibration	0.00121	10.95	VNA Calibration	. 1.91	9.42
Cable Stability	0.00338	85.53	Cable Stability	5.61	81.33
Connector Repeatability	0.00043	1.40	Connector Repeatability	0.67	1.18
VNA Drift	0.00007	0.04	VNA Drift	0.11	0.03
VNA Noise	0.00005	0.02	VNA Noise	0.11	0.03
Type-A of P_PM	0.00015	0.16	Type-A of P_PM	0.36	0.32
VNA Linearity	0.00050	1.90	VNA Linearity	1.72	7.68

Measurement Report

Uncertainty Budget	Magnitude	12 GHz	Uncertainty Budget	Phase	12 GHz
Value	0.09939		Value	-81.75	
Std Unc	0.00514		Std Unc	4.02	
U95	0.01027		U95	8.03	
Description	Unc Component	Unc Percentage	Description	Unc Component	Unc Percentage
VNA Calibration	0.00125	5.90	VNA Calibration	0.72	3.23
Cable Stability	0.00484	88.66	Cable Stability	3.91	94.78
Connector Repeatability	0.00072	1.98	Connector Repeatability	0.41	1.07
VNA Drift	0.00009	0.03	VNA Drift	0.04	0.01
VNA Noise	0.00006	0.02	VNA Noise	0.03	0.01
Type-A of P_PM	0.00024	0.24	Type-A of P_PM	0.10	0.06
VNA Linearity	0.00092	3.19	VNA Linearity	0.37	0.85
Uncertainty Budget	Magnitude	15 GHz	Uncertainty Budget	Phase	15 GHz
Value	0 10226		Value	15.01	
Value Stal Uno	0.10250		Value Std Line	13.01	
	0.00589			4.09	
095	0.01177		095	9.37	
Description	Unc Component	Unc Percentage	Description	Unc Component	Unc Percentage
VNA Calibration	0.00152	6.70	VNA Calibration	0.82	3.06
Cable Stability	0.00554	88.60	Cable Stability	4.57	95.25
Connector Repeatability	0.00075	1.62	Connector Repeatability	0.42	0.80
VNA Drift	0.00014	0.06	VNA Drift	0.03	0.01
VNA Noise	0.00007	0.01	VNA Noise	0.03	0.00
Type-A of P_PM	0.00040	0.47	Type-A of P_PM	0.14	0.09
VNA Linearity	0.00094	2.54	VNA Linearity	0.42	0.80
Uncertainty Budget	Magnitude	18 GHz	Uncertainty Budget	Phase	18 GHz
Value	0.05502		Value	175.32	
Std Unc	0.00619		Std Unc	7.58	
U95	0.01239		U95	15.17	
Description	Unc Component	Unc Percentage	Description	Unc Component	Unc Percentage
VNA Calibration	0.00187	9.13	VNA Calibration	1.90	6.30
Cable Stability	0.00580	87.62	Cable Stability	7.23	90.75
Connector Repeatability	0.00071	1.32	Connector Repeatability	0.74	0.95
VNA Drift	0.0008	0.02	VNA Drift	0.13	0.03
VNA Noise	0.00009	0.02	VNA Noise	0.09	0.02
Type-A of P_PM	0.00028	0.22	Type-A of P_PM	0.31	0.16
VNA Linearity	0.00081	1.69	VNA Linearity	1.01	1.78

22. Annex III – Measurement report from GUM Poland

1. PARTICIPANT INFORMATION

Laboratory name:	Główny Urząd Miar
Name of contact person:	Łukasz Usydus
Telephone numer:	+48 22 5819503
Fax:	-
E-mail:	lukasz.usydus@gum.gov.pl
Address:	Elektoralna 2, 00-139 Warszawa, Poland

2. MEASUREMENT DATE: 22.05.2018

3. ENVIRONMENTAL CONDITIONS:

Temperature	:	(23 ± 1) °C
Relative Humidity	:	(44 ± 2) %

4. STANDARDS USED IN MEASUREMENTS

Instrument Name	Manufacturer	Type / Model	Serial Number	Traceability
Directional coupler	Hewlett-Packard	11692D	1212A04401	NPL/GUM
Power sensor	Hewlett-Packard	8481D	3318A07727	GUM
Power meter	Hewlett-Packard	438A	3017U01578	GUM
Vector Network Analyzer	Agilent	E8364B	MY43030326	Keysight / Various NMIs
Calibration Kit	Agilent	85054B	MY39200148	NPL

5. DESCRIPTION OF MEASUREMENT METHOD

The measurements have been made using directional coupler with the DUT connected to the "Input" port and a sliding short connected to the "Test" port. The DUT's VRC magnitude was derived from the maximum and minimum values indicated by the power meter (with the Power sensor connected to the "Incident" port of the coupler). The sliding short used for these measurements is a USSR-made type HK3-1 element, of not the best quality, which reflection coeffcient magnitude is usually less than 1. Due to his fact the short's VRC at the certain positions (where readings on the power meter were either min or max) were measured using VNA calibrated with the cal kit listed in the table above. Thus, the actual reflection coefficient of the sliding short and its uncertainties were taken into account in the DUT's VRC calculations and the final uncertainty budget.

6. MEASUREMENT RESULTS

	Voltage Reflection coefficient of Travelling Standard @ 1 mW (0 dBr				
Frequency	VRC magnitude	Uncertainty (CL = 95.45%)			
2 GHz	0.0290	0.0069			
8 GHz	0.0398	0.0148			
12 GHz	0.1164	0.0134			
15 GHz	0.1015	0.0192			
18 GHz	0.0426	0.0233			

7. UNCERTAINTY BUDGET

Frequency : 2 GHz

Output level (CW) : ca. 1 mW (0 dBm)

Definition of contribution	Expected Value <i>x</i> i	Standard Uncertainty <i>u(x_i)</i>	Distribution Funtcion	Sensitivity coefficient <i>c</i> i	Uncertainty contribution <i>u(y_i)</i>				
Power ratio measurement	1.0550	0.0023	rectangular	0.5123	0.0012				
Coupler's S ₂₁	0.9632	0.0023	normal	normal -0.5471					
Coupler's S ₁₂	0.9633 0.0023		normal	-0.5470	0.0013				
Sliding short's Γ at max. power reading	0.9985	0.0073	normal	-0.2576	0.0019				
Sliding short's $ \Gamma $ at min. power reading	0.9922	0.0073	normal	-0.2718	0.0020				
	0.0200	Co	0.0035						
ivieasured value	0.0290	Expanded	Uncertainty (CL	= 95.45%)	0.0069				

Model function :	ISO-GUM
------------------	---------

Frequency : 8 GHz

Output level (CW) : ca. 1 mW (0 dBm)

Definition of contribution	Expected Value <i>x</i> _i	Standard Uncertainty <i>u(x_i)</i>	Distribution Funtcion	Sensitivity coefficient <i>c</i> i	Uncertainty contribution <i>u(y_i)</i>	
Power ratio measurement	1.0696	0.0112	rectangular	0.0062		
Coupler's	0.9231	0.0035	0.0035 normal		0.0022	
Coupler's	0.9232	0.0035	normal	-0.6198	0.0022	
Sliding short's Γ at max. power reading	0.9888	0.0064	normal	-0.2790	0.0018	
Sliding short's Γ at min. power reading	0.9928	0.0064	normal	-0.2985	0.0019	

Measured	0.0208	Combined Uncertainty	0.0074
value	0.0596	Expanded Uncertainty (CL = 95.45%)	0.0148

Model function : ISO-GUM

Frequency : 12 GHz

Output level (CW) : ca. 1 mW (0 dBm)

Definition of contribution	Expected Value <i>x_i</i>	Uncertainty contribution <i>u(y_i)</i>					
Power ratio measurement	1.2092	0.0051	0.0026				
Coupler's S ₂₁	0.9067	0.0060	normal	-0.6135	0.0037		
Coupler's S ₁₂	0.9063 0.0060		normal	0.0037			
Sliding short's Γ at max. power reading	0.9923	0.0084	normal	-0.2543	0.0021		
Sliding short's Γ at min. power reading	ling short's at min. power reading		normal	-0.3075	0.0026		
Measured	0 1164	Со	mbined Uncertai	nty	0.0067		
value	0.1104	Expanded	Uncertainty (CL	= 95.45%)	0.0134		

Model function	: ISO-GUM
Mouch function	. 130 00101

Frequency : 15 GHz

Output level (CW) : ca. 1 mW (0 dBm)

Definition of contribution	Expected Value <i>x</i> i	Standard Uncertainty <i>u(x_i)</i>	Distribution Funtcion	Sensitivity coefficient <i>c</i> i	Uncertainty contribution u(y _i)		
Power ratio measurement	1.1674	0.0117	rectangular	0.5594	0.0066		
Coupler's	0.8749	0.0062	normal	-0.6930	0.0043		
Coupler's	0.8755	0.0061	normal	-0.6926	0.0042		
Sliding short's Γ at max. power reading	0.9912	0.0084	normal	-0.2816	0.0024		
Sliding short's $ \Gamma $ at min.	0.9951	0.0085	normal	-0.3288	0.0028		

power								
reading								
Measured	0 1015	Со	Combined Uncertainty					
value	0.1015	Expanded	Expanded Uncertainty (CL = 95.45%)					

ISO-GUM

Frequency : 18 GHz

Output level (CW) : ca. 1 mW (0 dBm)

Definition of contribution	Expected Value <i>x</i> _i	Sensitivity coefficient <i>c</i> i	Uncertainty contribution <i>u(y_i)</i>								
Power ratio measurement	1.0679	0.0154	0.6065	0.0093							
Coupler's S ₂₁	0.8817	0.0059 normal -0.7112		-0.7112	0.0042						
Coupler's S ₁₂	0.8817	0.8817 0.0059 normal -0.7112		-0.7112	0.0042						
Sliding short's Γ at max. power reading	0.9918	0.0084	normal	-0.3057	0.0026						
Sliding short's Γ at min. power reading	0.9922	0.0084	0.0084 normal -		0.0028						
Measured	0.0426	Co	mbined Uncertai	nty	0.0117						
value	0.0420	Expanded	Expanded Uncertainty (CL = 95.45%)								

23. Annex IV – Calibration certificates from INTA Spain

Certificate of Calibration

Número **42962** *Number*

Página <u>1</u> de <u>4</u> páginas *Page ____ of ____ pages*

Ministerio de Defensa. Secretaría de Estado de la Defensa. INSTITUTO NACIONAL DE TÉCNICA AEROESPACIAL Centro de Metrología y Calibración – Campus Torrejón Carretera de Ajalvir, p.k. 4,5 28850 Torrejón de Ardoz (Madrid) – ESPAÑA Teléfono: (+34) 915 201 859

OBJETO Item Generador de señal sintetizado (conector Tipo N hembra) Synthesized CW Generator

MARCA Mark

3339A00223

Hewlett Packard

MODELO *Model*

(https://valide.redsara.es/valide/validarFirma/ejecutar.htm

Laboratorio de RF y Microondas Fecha de f

siguiente plataforma.

IRMADO por Manuel Rodriguez Higuero, Jefe de I e puede comprobar la validez de la firma digital desde la s

firma: 08/03/2017 13:53:1

83712A

IDENTIFICACIÓN Identification

SOLICITANTE Applicant INTA - Centro de Metrología y Calibración Laboratorio de Radiofrecuencia y Microondas Ctra. Torrejón a Ajalvir, p.k. 4,5 28850 Torrejón de Ardoz, Madrid

FECHA/S DE CALIBRACIÓN Date/s of Calibration

Signatario/s autorizado/s *Authorised Signatory/ies*

Fecha de Emisión Date of issue **8 de marzo de 2017**

Manuel Rodríguez Higuero Jefe del Laboratorio de RF y Microondas

Ref: OT-RF2017-0610

Las medidas son trazables a "Institutos Nacionales de Metrología" reconocidos, por medio de ejercicios de calibración o intercomparación. Este certificado no podrá ser reproducido parcialmente sin la aprobación por escrito del laboratorio emisor.

The measurements are traceable to recognised "National Metrology Institutes", via calibration or intercomparison exercises. This certificate may not be partially reproduced, except with the prior written permission of the issuing laboratory.

Certificado INTA Nº 42962

Signatario autorizado:

[sustituida por firma digital]

MINISTERIO DE DEFENSA SECRETARÍA DE ESTADO DE LA DEFENSA INSTITUTO NACIONAL DE TÉCNICA AEROESPACIAL CENTRO DE METROLOGÍA Y CALIBRACIÓN

Página 2 de 4 páginas

Fecha de emisión: 8 de marzo de 2017

Manuel Rodríguez Higuero Jefe del Laboratorio de RF y Microondas

CALIBRATION:

Laboratorio de RF y Microondas Fecha de firma: 08/03/2017 13:53:12 siguiente plataforma. (https://valide.redsara.es/valide/validerFirma/ejecutar.html

juero, Jefe de l digital desde la

RMADO por Manuel Rodriguez Higuero, puede comprobar la validez de la firma digital

RMADO por Manuel

Before any measurement was made, the Unit Under Test was connected to the mains (220 V @ 50 Hz) and kept in Stand-By state at room temperature within the Laboratory for at least 24 hours. Ambient temperature during measurement was 23°C ± 1°C and relative humidity less than 70%.

Mesurement System: the measurement configuration used makes use of the following equipment:

- Directional Coupler, Amplifier Research model DC3002A, serial number 305138
- Directional Coupler, Narda model 3292-2, serial number 03162
- Short Circuit, model INMET 7002, s/n 64671
- Power Meter, Hewlett Packard model 436A, serial number 3103U07436
- Power Sensor, Agilent 8481D, serial number MY51310006
- 30 cm Air Line, Wiltron model SC4934-30, serial number 400001
- 3 m cable, Utiflex serial number FA210B0030007071

Measurement procedure: RF/MPR/7231/302/INTA "Medida del Coeficiente de Reflexión (Source Match) de una Fuente de Radiofrecuencia". The procedure is based on the ripple technique making use of a calibrated airline. FFT is subsequently used in order to filter out the obtained ripple signal, splitting it into two 'processed' ripples.

For measurement at 50 MHz a modification of the measurement procedure is applied which makes use of a long cable in order to induce the ripple signal at the required 'rate of variation' for determination of VRC at low frequencies. No filtering is applied in this case.

UUT configuration: Measurement of Source Match was made for the following setup:

- Nominal Output Level: +0 dBm
- Output mode: CW signal

Measurement results are contained in Table 1 as measured Source Match (VRC) and its associated uncertainty. All working standards and instrumentation used in the calibration are traceable to the National Physical Laboratory (NPL) of the United Kingdom and to the Eidgenössische Institut für Metrologie (METAS) of Switzerland.

The measured values correspond to the moment and ambient conditions under which they were taken. No consideration is made about the stability of the UUT and / or the measurement system.

The expanded uncertainty has been obtained by multiplying the standard uncertainty by a coverage factor k such that the probability of coverage or confidence level is 95.45% (k = 2 in all cases, unless otherwise stated in the table). The standard measurement uncertainty has been determined in accordance with document EA-4/02 M: 2013, 'Assessment of measurement uncertainty in calibrations'.

Certificado INTA Nº 42962

MINISTERIO DE DEFENSA SECRETARÍA DE ESTADO DE LA DEFENSA INSTITUTO NACIONAL DE TÉCNICA AEROESPACIAL CENTRO DE METROLOGÍA Y CALIBRACIÓN

FIRMADO por Manuel Rodriguez Higuero, Jefe de Laboratorio de RF y Microondas Fecha de firma: 08/03/2017 13:53:12 Se puede comprobar la validez de la firma digital desde la siguiente plataforma. (https://valide.redsara.es/valide/valider/Firma/ejecutar.html)

Página 3 de 4 páginas

Fecha de emisión: 8 de marzo de 2017

Signatario autorizado:

[sustituida por firma digital]

Manuel Rodríguez Higuero Jefe del Laboratorio de RF y Microondas

<u>Tabla 1</u>

Frequency (GHz)	Source Match (VRC)	Coverage factor k	Uncertainty (±)
0.05	0.045	2.00	0.009
2	0.040	2.10	0.012
3	0.049	2.13	0.013
4	0.067	2.11	0.016
5	0.050	2.21	0.015
6	0.079	2.09	0.018
7	0.047	2.32	0.019
8	0.073	2.21	0.024
9	0.088	2.05	0.028
10	0.076	2.07	0.018
11	0.139	2.00	0.045
12	0.102	2.03	0.032
12.4	0.093	2.02	0.034
13	0.041	2.28	0.021
14	0.035	2.10	0.015
15	0.096	2.01	0.033
16	0.081	2.10	0.032
17	0.078	2.18	0.032
18	0.054	2.16	0.024

Finally a graphical representation of the parameter under test is included. It is intended for information purposes only and it is not part of the content of this certificate as regards measured values and their associated uncertainty (the values contained in the tables always prevail).

MINISTERIO DE LA DEFENSA SECRETARÍA DE ESTADO DE LA DEFENSA INSTITUTO NACIONAL DE TÉCNICA AEROESPACIAL CENTRO DE METROLOGÍA Y CALIBRACIÓN

FIRMADO por Manuel Rodriguez Higuero, Jefe de Laboratorio de RF y Microondas Fecha de firma: 08/03/2017 13:53:12 Se puede comprobar la validez de la firma digital desde la siguiente plataforma. (https://valide.redsara.es/valide/validarFirma/ejecutar.html)

Certificado INTA Nº 42962

Página <u>4</u> de <u>4</u> páginas

Fecha de emisión: 8 de marzo de 2017

Signatario autorizado:

[sustituida por firma digital]

Manuel Rodríguez Higuero Jefe del Laboratorio de RF y Microondas

Cliente: Laboratorio de RF y Microondas

Modelo: HP 83712A Nº de serie: 3339A00223

Frec (GHz)	IL línea	u IL línea	IL acopl	u IL acopl	Γ corto	u Γ corto	Γg corr	k	uГg	SWR corr	Γg	D (dB)	u D	D eff	ТРМ	u TPM	TPm eff	Γ line	u Г line	Γ line eff
0.05							0.045	2.00	0.009											
2	0.077	0.010	0.317	0.031	0.994	0.004	0.040	2.10	0.012	1.08	0.040	33.4	0.013	0.025	0.035	0.017	0.038	0.001	0.003	0.003
3	0.095	0.016	0.375	0.031	0.994	0.004	0.049	2.13	0.013	1.10	0.049	33.5	0.013	0.025	0.022	0.017	0.028	0.002	0.003	0.003
4	0.111	0.017	0.340	0.031	0.993	0.004	0.067	2.11	0.016	1.14	0.067	35.4	0.012	0.021	0.026	0.017	0.031	0.003	0.003	0.004
5	0.125	0.016	0.327	0.031	0.993	0.004	0.050	2.21	0.015	1.11	0.050	34.1	0.013	0.023	0.016	0.017	0.023	0.003	0.003	0.004
6	0.138	0.017	0.401	0.031	0.993	0.004	0.079	2.09	0.018	1.17	0.079	40.7	0.017	0.020	0.019	0.017	0.026	0.005	0.003	0.006
7	0.150	0.027	0.449	0.031	0.993	0.004	0.047	2.32	0.019	1.10	0.047	29.7	0.020	0.038	0.032	0.017	0.036	0.005	0.003	0.005
8	0.161	0.032	0.420	0.031	0.993	0.004	0.073	2.21	0.024	1.16	0.073	29.4	0.021	0.040	0.029	0.017	0.033	0.004	0.003	0.005
0	0.404	0.000	0.400	0.024	0.000	0.004	0.070	0.04	0.004	4.40	0 070	00.4	0.004	0.040		0.047	0.000	0.004	0.000	0.005
8	0.161	0.032	0.420	0.031	0.993	0.004	0.073	2.21	0.024	1.16	0.073	29.4	0.021	0.040	0.029	0.017	0.033	0.004	0.003	0.005
9	0.172	0.036	0.406	0.045	0.993	0.004	0.088	2.05	0.028	1.19	0.088	27.0	0.027	0.052	0.068	0.020	0.071	0.003	0.003	0.004
10	0.181	0.036	0.426	0.040	0.993	0.004	0.076	2.07	0.018	1.16	0.076	37.0	0.036	0.039	0.013	0.020	0.024	0.003	0.003	0.004
11	0.188	0.027	0.494	0.040	0.993	0.005	0.139	2.00	0.045	1.32	0.139	23.7	0.047	0.081	0.033	0.020	0.039	0.001	0.003	0.003
12	0.199	0.033	0.499	0.042	0.992	0.004	0.102	2.03	0.032	1.23	0.102	30.1	0.056	0.064	0.053	0.020	0.057	0.003	0.003	0.004
12	0 199	0.033	0 499	0 042	0 992	0 004	0 102	2 03	0 032	1 23	0 102	30.1	0.056	0 064	0.053	0 020	0.057	0.003	0 003	0 004
12.4	0 203	0.054	0 473	0.042	0.992	0 004	0.093	2 02	0.034	1.20	0.093	25.2	0.083	0.001	0.048	0.035	0.059	0.004	0.004	0.005
13	0.200	0.042	0.442	0.054	0.002	0.004	0.000	2 28	0.004	1.08	0.000	30.0	0.064	0.000	0.053	0.030	0.000	0.006	0.007	0.006
14	0.216	0.042	0.458	0.004	0.000	0.004	0.041	2 10	0.021	1.00	0.041	27.2	0.004	0.072	0.000	0.000	0.000	0.000	0.000	0.000
14	0.210	0.042	0.450	0.002	0.352	0.004	0.035	2.10	0.015	1.07	0.035	21.2	0.050	0.071	0.000	0.030	0.093	0.009	0.003	0.010
15	0.224	0.054	0.523	0.053	0.992	0.004	0.096	2.01	0.033	1.21	0.096	23.4	0.055	0.087	0.054	0.029	0.062	0.011	0.003	0.011
16	0.231	0.049	0.581	0.050	0.992	0.004	0.081	2.10	0.032	1.18	0.081	24.1	0.062	0.088	0.044	0.029	0.053	0.011	0.003	0.011
17	0.238	0.042	0.575	0.049	0.991	0.004	0.078	2.18	0.032	1.17	0.078	31.6	0.071	0.076	0.023	0.029	0.037	0.012	0.003	0.012
18	0.245	0.033	0.545	0.057	0.993	0.004	0.054	2.16	0.024	1.11	0.054	25.2	0.063	0.084	0.058	0.029	0.065	0.014	0.004	0.015

Nº medidas

5

Modelo: HP 83712A Nº de serie: 3339A00223

08/03/2017

E max (+)	E max (-)	Гgmax	E min (+)	E min (-)	Гg min	u vect (U ₁)	u alg (U ₂)	U₃	k ₃	Gr. Libertad	k95.45-k ₃	U4	U ₅	σ	U ₆	u comb	k	и ехр Гд
1.08499	1.00343	0.045	0.99677	0.93091	0.036	0.004	0.005	0.004	2.029	88	0.0001	0.0001	0.0000	0.008	0.003	0.005	2.10	0.012
1.10227	1.00399	0.055	0.99611	0.91637	0.044	0.005	0.005	0.004	2.033	77	0.0001	0.0002	0.0001	0.009	0.004	0.006	2.13	0.013
1.14168	1.00512	0.076	0.99484	0.88778	0.059	0.008	0.005	0.004	2.037	69	-0.0001	0.0002	0.0001	0.011	0.005	0.008	2.11	0.016
1.10535	1.00498	0.056	0.99508	0.91315	0.045	0.005	0.005	0.004	2.025	101	0.0000	0.0002	0.0001	0.011	0.005	0.007	2.21	0.015
1.16648	1.00737	0.090	0.99236	0.86938	0.070	0.010	0.005	0.004	2.033	76	0.0003	0.0003	0.0002	0.012	0.005	0.009	2.09	0.018
1.10009	1.00646	0.054	0.99404	0.92173	0.041	0.006	0.005	0.004	2.039	65	0.0001	0.0002	0.0001	0.015	0.007	0.008	2.32	0.019
1.15539	1.00684	0.085	0.99338	0.88344	0.063	0.011	0.005	0.004	2.053	48	0.0001	0.0003	0.0003	0.018	0.008	0.011	2.21	0.024
1.15539	1.00684	0.085	0.99338	0.88344	0.063	0.011	0.005	0.004	2.053	48	0.0001	0.0003	0.0003	0.018	0.008	0.011	2.21	0.024
1.20085	1.00731	0.111	0.99342	0.86756	0.072	0.019	0.005	0.004	2.101	26	0.0001	0.0005	0.0004	0.016	0.007	0.014	2.05	0.028
1.15881	1.00626	0.088	0.99376	0.87857	0.066	0.011	0.005	0.004	2.122	22	-0.0022	0.0004	0.0003	0.011	0.005	0.009	2.07	0.018
1.32216	1.00780	0.184	0.99234	0.80448	0.110	0.037	0.005	0.005	2.129	21	-0.0030	0.0006	0.0004	0.014	0.006	0.023	2.00	0.045
1.22850	1.00762	0.130	0.99298	0.85196	0.083	0.023	0.005	0.004	2.076	34	0.0005	0.0005	0.0004	0.016	0.007	0.016	2.03	0.032
1.22850	1.00762	0.130	0.99298	0.85196	0.083	0.023	0.005	0.004	2.076	34	0.0005	0.0005	0.0004	0.016	0.007	0.016	2.03	0.032
1.22194	1.00931	0.124	0.99223	0.86635	0.074	0.025	0.005	0.004	2.147	18	0.0016	0.0007	0.0006	0.016	0.007	0.017	2.02	0.034
1.09321	1.00804	0.049	0.99351	0.93469	0.034	0.008	0.005	0.004	2.135	20	-0.0015	0.0003	0.0002	0.016	0.007	0.009	2.28	0.021
1.08698	1.01200	0.044	0.99107	0.94270	0.028	0.008	0.005	0.004	2.100	26	0.0009	0.0002	0.0002	0.010	0.004	0.007	2.10	0.015
1.23036	1.01529	0.128	0.98707	0.85998	0.075	0.026	0.005	0.004	2.112	23	0.0024	0.0006	0.0006	0.013	0.006	0.017	2.01	0.033
1.18804	1.01453	0.105	0.98787	0.88052	0.065	0.020	0.005	0.004	2.106	25	-0.0013	0.0005	0.0005	0.022	0.010	0.015	2.10	0.032
1.17724	1.01517	0.098	0.98669	0.88029	0.064	0.017	0.005	0.004	2.090	29	0.0005	0.0004	0.0004	0.023	0.010	0.015	2.18	0.032
1.13253	1.01781	0.069	0.98610	0.91382	0.043	0.013	0.005	0.004	2.098	27	-0.0012	0.0004	0.0002	0.017	0.008	0.011	2.16	0.024

Certificate of Calibration

Número **43308** *Number*

Hewlett Packard

3339A00223

Página <u>1</u> de <u>4</u> páginas *Page ____ of ____ pages*

Ministerio de Defensa. Secretaría de Estado de la Defensa. INSTITUTO NACIONAL DE TÉCNICA AEROESPACIAL Centro de Metrología y Calibración – Campus Torrejón Carretera de Ajalvir, p.k. 4,5 28850 Torrejón de Ardoz (Madrid) – ESPAÑA Teléfono: (+34) 915 201 859

OBJETO Item Generador de señal sintetizado (conector Tipo N hembra) Synthesized CW Generator

MARCA Mark

MODELO

Model

83712A

IDENTIFICACIÓN Identification

SOLICITANTE Applicant INTA - Centro de Metrología y Calibración Laboratorio de Radiofrecuencia y Microondas Ctra. Torrejón a Ajalvir, p.k. 4,5 28850 Torrejón de Ardoz, Madrid (Spain)

FECHA/S DE CALIBRACIÓN Date/s of Calibration

Signatario/s autorizado/s *Authorised Signatory/ies*

Fecha de Emisión Date of issue **20 de abril de 2017**

Manuel Rodríguez Higuero Jefe del Laboratorio de RF y Microondas

Ref: OT-RF2017-1009

Las medidas son trazables a "Institutos Nacionales de Metrología" reconocidos, por medio de ejercicios de calibración o intercomparación. Este certificado no podrá ser reproducido parcialmente sin la aprobación por escrito del laboratorio emisor.

The measurements are traceable to recognised "National Metrology Institutes", via calibration or intercomparison exercises. This certificate may not be partially reproduced, except with the prior written permission of the issuing laboratory.

Certificado INTA Nº 43308

Signatario autorizado:

MINISTERIO DE DEFENSA SECRETARÍA DE ESTADO DE LA DEFENSA INSTITUTO NACIONAL DE TÉCNICA AEROESPACIAL CENTRO DE METROLOGÍA Y CALIBRACIÓN

Página 2 de 4 páginas

Fecha de emisión: 20 de abril de 2017

[sustituida por firma digital]

Manuel Rodríguez Higuero Jefe del Laboratorio de RF y Microondas

CALIBRATION:

Laboratorio de RF y Microondas Fecha de firma: 20/04/2017 12:12:05 siguiente plataforma. (https://valide.redsara.es/valide/validarFirma/ejecutar.htm)

juero, Jefe de l digital desde la

RMADO por Manuel Rodriguez Higuero, puede comprobar la validez de la firma digital

RMADO por Manuel

Before any measurement was made, the Unit Under Test was connected to the mains (220 V @ 50 Hz) and kept in Stand-By state at room temperature within the Laboratory for at least 24 hours. Ambient temperature during measurement was 23°C ± 1°C and relative humidity less than 70%.

Mesurement System: the measurement configuration used makes use of the following equipment:

- Directional Coupler, Amplifier Research model DC3002A, serial number 305138
- Directional Coupler, Narda model 3292-2, serial number 03162
- Short Circuit, model INMET 7002, s/n 64671
- Power Meter, Hewlett Packard model 436A, serial number 3103U07436
- Power Sensor, Agilent 8481D, serial number MY51310006
- 30 cm Air Line, Wiltron model SC4934-30, serial number 400001
- 3 m cable, Utiflex serial number FA210B0030007071

Measurement procedure: RF/MPR/7231/302/INTA "Medida del Coeficiente de Reflexión (Source Match) de una Fuente de Radiofrecuencia". The procedure is based on the ripple technique making use of a calibrated airline. FFT is subsequently used in order to filter out the obtained ripple signal, splitting it into two 'processed' ripples.

For measurement at 50 MHz a modification of the measurement procedure is applied which makes use of a long cable in order to induce the ripple signal at the required 'rate of variation' for determination of VRC at low frequencies. No filtering is applied in this case.

UUT configuration: Measurement of Source Match was made for the following setup:

- Nominal Output Level: +0 dBm
- Output mode: CW signal

Measurement results are contained in Table 1 as measured Source Match (VRC) and its associated uncertainty. All working standards and instrumentation used in the calibration are traceable to the National Physical Laboratory (NPL) of the United Kingdom and to the Eidgenössische Institut für Metrologie (METAS) of Switzerland.

The measured values correspond to the moment and ambient conditions under which they were taken. No consideration is made about the stability of the UUT and / or the measurement system.

The expanded uncertainty has been obtained by multiplying the standard uncertainty by a coverage factor k such that the probability of coverage or confidence level is 95.45% (k = 2 in all cases, unless otherwise stated in the table). The standard measurement uncertainty has been determined in accordance with document EA-4/02 M: 2013, 'Assessment of measurement uncertainty in calibrations'.

FIRMADO por Manuel Rodniguez Higuero, Jefe de Laboratorio de RF y Microondas Fecha de firma: 20/04/2017 12:12:09 Se puede comprobar la validez de la firma digital desde la siguiente plataforma. (https://valide.redsara.es/valide/valider/Firma/ejecutar.html)

CERTIFICADO DE CALIBRACIÓN

Certificado INTA Nº 43308

MINISTERIO DE DEFENSA SECRETARÍA DE ESTADO DE LA DEFENSA INSTITUTO NACIONAL DE TÉCNICA AEROESPACIAL CENTRO DE METROLOGÍA Y CALIBRACIÓN Página 3 de 4 páginas

Fecha de emisión: 20 de abril de 2017

Signatario autorizado:

[sustituida por firma digital]

Manuel Rodríguez Higuero Jefe del Laboratorio de RF y Microondas

Table 1

Frequency (GHz)	Source Match (VRC)	Coverage factor k	Uncertainty (±)
0.05	0.044	2.00	0.009
2	0.040	2.11	0.012
3	0.050	2.14	0.013
4	0.067	2.11	0.016
5	0.051	2.23	0.016
6	0.078	2.09	0.018
7	0.044	2.32	0.019
8	0.070	2.20	0.022
9	0.088	2.05	0.028
10	0.076	2.07	0.018
11	0.139	2.00	0.045
12	0.102	2.02	0.032
12.4	0.093	2.02	0.034
13	0.040	2.28	0.021
14	0.035	2.10	0.015
15	0.096	2.01	0.033
16	0.081	2.10	0.032
17	0.079	2.18	0.032
18	0.054	2.15	0.024

Finally a graphical representation of the parameter under test is included. It is intended for information purposes only and it is not part of the content of this certificate as regards measured values and their associated uncertainty (the values contained in the tables always prevail).

MINISTERIO DE LA DEFENSA SECRETARÍA DE ESTADO DE LA DEFENSA INSTITUTO NACIONAL DE TÉCNICA AEROESPACIAL CENTRO DE METROLOGÍA Y CALIBRACIÓN

FIRMADO por Manuel Rodriguez Higuero, Jefe de Laboratorio de RF y Microondas Fecha de firma: 20/04/2017 12:12:09 Se puede comprobar la validez de la firma digital desde la siguiente plataforma. (https://valide.redsara.es/valide/validarFirma/ejecutar.html

Certificado INTA Nº 43308

Signatario autorizado:

Página <u>4</u> de <u>4</u> páginas

Fecha de emisión: 20 de abril de 2017

[sustituida por firma digital]

Manuel Rodríguez Higuero Jefe del Laboratorio de RF y Microondas

Cliente: Laboratorio de RF y Microondas

Modelo: HP 83712A Nº de serie: 3339A00223

Frec (GHz)	IL línea	u IL línea	IL acopl	u IL acopl	Γ corto	u Г corto	Γg corr	k	uГg	SWR corr	Γg	D (dB)	u D	D eff	ТРМ	u TPM	TPm eff	Γ line	u Г line	Γ line eff
0.05							0.044	2.00	0.009											
2	0.077	0.010	0.317	0.031	0.994	0.004	0.040	2.11	0.012	1.08	0.040	33.4	0.013	0.025	0.035	0.017	0.038	0.001	0.003	0.003
3	0.095	0.016	0.375	0.031	0.994	0.004	0.050	2.14	0.013	1.10	0.050	33.5	0.013	0.025	0.022	0.017	0.028	0.002	0.003	0.003
4	0.111	0.017	0.340	0.031	0.993	0.004	0.067	2.11	0.016	1.14	0.067	35.4	0.012	0.021	0.026	0.017	0.031	0.003	0.003	0.004
5	0.125	0.016	0.327	0.031	0.993	0.004	0.051	2.23	0.016	1.11	0.051	34.1	0.013	0.023	0.016	0.017	0.023	0.003	0.003	0.004
6	0.138	0.017	0.401	0.031	0.993	0.004	0.078	2.09	0.018	1.17	0.078	40.7	0.017	0.020	0.019	0.017	0.026	0.005	0.003	0.006
7	0.150	0.027	0.449	0.031	0.993	0.004	0.044	2.32	0.019	1.09	0.044	29.7	0.020	0.038	0.032	0.017	0.036	0.005	0.003	0.005
8	0.161	0.032	0.420	0.031	0.993	0.004	0.070	2.20	0.022	1.15	0.070	29.4	0.021	0.040	0.029	0.017	0.033	0.004	0.003	0.005
8	0.161	0.032	0.420	0.031	0.993	0.004	0.070	2.20	0.022	1.15	0.070	29.4	0.021	0.040	0.029	0.017	0.033	0.004	0.003	0.005
9	0.172	0.036	0.406	0.045	0.993	0.004	0.088	2.05	0.028	1.19	0.088	27.0	0.027	0.052	0.068	0.020	0.071	0.003	0.003	0.004
10	0.181	0.036	0.426	0.040	0.993	0.004	0.076	2.07	0.018	1.17	0.076	37.0	0.036	0.039	0.013	0.020	0.024	0.003	0.003	0.004
11	0.188	0.027	0.494	0.040	0.993	0.005	0.139	2.00	0.045	1.32	0.139	23.7	0.047	0.081	0.033	0.020	0.039	0.001	0.003	0.003
12	0.199	0.033	0.499	0.042	0.992	0.004	0.102	2.02	0.032	1.23	0.102	30.1	0.056	0.064	0.053	0.020	0.057	0.003	0.003	0.004
12	0.199	0.033	0.499	0.042	0.992	0.004	0.102	2.02	0.032	1.23	0.102	30.1	0.056	0.064	0.053	0.020	0.057	0.003	0.003	0.004
12.4	0.203	0.054	0.473	0.067	0.992	0.004	0.093	2.02	0.034	1.21	0.093	25.2	0.083	0.099	0.048	0.035	0.059	0.004	0.004	0.005
13	0.208	0.042	0.442	0.054	0.993	0.004	0.040	2.28	0.021	1.08	0.040	30.0	0.064	0.072	0.053	0.030	0.060	0.006	0.003	0.006
14	0.216	0.042	0.458	0.062	0.992	0.004	0.035	2.10	0.015	1.07	0.035	27.2	0.056	0.071	0.088	0.030	0.093	0.009	0.003	0.010
15	0.224	0.054	0.523	0.053	0.992	0.004	0.096	2.01	0.033	1.21	0.096	23.4	0.055	0.087	0.054	0.029	0.062	0.011	0.003	0.011
16	0.231	0.049	0.581	0.050	0.992	0.004	0.081	2.10	0.032	1.18	0.081	24.1	0.062	0.088	0.044	0.029	0.053	0.011	0.003	0.011
17	0.238	0.042	0.575	0.049	0.991	0.004	0.079	2.18	0.032	1.17	0.079	31.6	0.071	0.076	0.023	0.029	0.037	0.012	0.003	0.012
18	0.245	0.033	0.545	0.057	0.993	0.004	0.054	2.15	0.024	1.11	0.054	25.2	0.063	0.084	0.058	0.029	0.065	0.014	0.004	0.015

Nº medidas

5

Modelo: HP 83712A Nº de serie: 3339A00223

20/04/2017

E max (+)	E max (-)	Гgmax	E min (+)	E min (-)	Гgmin	u vect (U ₁)	u alg (U ₂)	U ₃	k ₃	Gr. Libertad	k95.45-k ₃	U₄	U_5	σ	U ₆	u comb	k	и ехр Гд
1.08453	1.00343	0.044	0.99677	0.93126	0.036	0.004	0.005	0.004	2.029	88	0.0001	0.0001	0.0000	0.008	0.003	0.005	2.11	0.012
1.10254	1.00399	0.055	0.99611	0.91617	0.045	0.005	0.005	0.004	2.033	77	0.0001	0.0002	0.0001	0.009	0.004	0.006	2.14	0.013
1.14075	1.00511	0.075	0.99485	0.88843	0.059	0.008	0.005	0.004	2.037	69	-0.0001	0.0002	0.0001	0.011	0.005	0.008	2.11	0.016
1.10689	1.00500	0.057	0.99506	0.91200	0.046	0.005	0.005	0.004	2.025	101	0.0000	0.0002	0.0001	0.012	0.005	0.007	2.23	0.016
1.16381	1.00734	0.089	0.99241	0.87120	0.069	0.010	0.005	0.004	2.033	76	0.0003	0.0003	0.0002	0.011	0.005	0.008	2.09	0.018
1.09345	1.00638	0.050	0.99415	0.92651	0.039	0.006	0.005	0.004	2.039	65	0.0001	0.0002	0.0001	0.014	0.006	0.008	2.32	0.019
1.14908	1.00677	0.081	0.99348	0.88761	0.061	0.010	0.005	0.004	2.053	48	0.0001	0.0003	0.0003	0.016	0.007	0.010	2.20	0.022
1.14908	1.00677	0.081	0.99348	0.88761	0.061	0.010	0.005	0.004	2.053	48	0.0001	0.0003	0.0003	0.016	0.007	0.010	2.20	0.022
1.20077	1.00731	0.110	0.99342	0.86760	0.072	0.019	0.005	0.004	2.101	26	0.0001	0.0005	0.0004	0.016	0.007	0.014	2.05	0.028
1.15920	1.00627	0.088	0.99376	0.87831	0.066	0.011	0.005	0.004	2.122	22	-0.0022	0.0004	0.0003	0.011	0.005	0.009	2.07	0.018
1.32235	1.00780	0.184	0.99234	0.80439	0.110	0.037	0.005	0.005	2.129	21	-0.0030	0.0006	0.0004	0.014	0.006	0.023	2.00	0.045
1.22856	1.00762	0.130	0.99298	0.85193	0.083	0.023	0.005	0.004	2.076	34	0.0005	0.0005	0.0004	0.016	0.007	0.016	2.02	0.032
1.22856	1.00762	0.130	0.99298	0.85193	0.083	0.023	0.005	0.004	2.076	34	0.0005	0.0005	0.0004	0.016	0.007	0.016	2.02	0.032
1.22195	1.00931	0.124	0.99223	0.86634	0.074	0.025	0.005	0.004	2.147	18	0.0016	0.0007	0.0006	0.016	0.007	0.017	2.02	0.034
1.09257	1.00803	0.049	0.99352	0.93511	0.034	0.008	0.005	0.004	2.135	20	-0.0015	0.0003	0.0002	0.016	0.007	0.009	2.28	0.021
1.08673	1.01200	0.044	0.99108	0.94286	0.028	0.008	0.005	0.004	2.100	26	0.0009	0.0002	0.0002	0.010	0.004	0.007	2.10	0.015
1.23028	1.01529	0.128	0.98707	0.86003	0.075	0.026	0.005	0.004	2.112	23	0.0024	0.0006	0.0006	0.013	0.006	0.017	2.01	0.033
1.18810	1.01453	0.105	0.98787	0.88048	0.065	0.020	0.005	0.004	2.106	25	-0.0013	0.0005	0.0005	0.022	0.010	0.015	2.10	0.032
1.17773	1.01517	0.098	0.98667	0.88001	0.064	0.017	0.005	0.004	2.090	29	0.0005	0.0004	0.0004	0.023	0.011	0.015	2.18	0.032
1.13332	1.01782	0.069	0.98608	0.91336	0.044	0.013	0.005	0.004	2.098	27	-0.0012	0.0004	0.0002	0.017	0.008	0.011	2.15	0.024

firma: 14/03/2019 14:57:2

siguiente plataforma. (https://valide.redsara.es/valide/validarFirma/ejecutar.htn

aboratorio de RF y Microondas Fecha de f

IRMADO por Manuel Rodriguez Higuero, Jefe de I e puede comprobar la validez de la firma digital desde la

CERTIFICADO DE CALIBRACIÓN

Certificate of Calibration

Número **49072** *Number*

Página <u>1</u> de <u>4</u> páginas Page <u>of pages</u>

Ministerio de Defensa. Secretaría de Estado de la Defensa. INSTITUTO NACIONAL DE TÉCNICA AEROESPACIAL Centro de Metrología y Calibración Carretera de Ajalvir, p.k. 4,5 28850 Torrejón de Ardoz (Madrid) – ESPAÑA Teléfono: (+34) 91 520 1516 / E-mail: metrologia.calibracion@inta.es Generador de señal sintetizado (conector Tipo N hembra) OBJETO Synthesized CW Generator Item MARCA **Hewlett Packard** Mark MODELO 83712A Model 3339A00223 **IDENTIFICACIÓN** Identification SOLICITANTE INTA - Centro de Metrología y Calibración Laboratorio de Radiofrecuencia y Microondas Applicant Ctra. Torrejón a Ajalvir, p.k. 4,5 28850 Torrejón de Ardoz, Madrid (Spain) 11 y 12 de marzo de 2019 FECHA/S DE CALIBRACIÓN Date/s of Calibration Fecha de Emisión Signatario/s autorizado/s Date of issue Authorised Signatory/ies 14 de marzo de 2019 Manuel Rodríguez Higuero Jefe del Laboratorio de RF y Microondas Ref: OT-RF2019-0564 Este Certificado no atribuye al objeto otras características que las indicadas por los datos aquí contenidos. Los resultados se refieren al momento y condiciones en que se realizaron las mediciones. Proporciona trazabilidad metrológica al SI. No se permite

This Certificate does not attribute to the item properties other than those indicated by the data contained herein. The results refer to the time and conditions in which the measurements were made. It provides metrological traceability to the SI. Partial reproduction of this document is not allowed without the express authorization of INTA.

la reproducción parcial de este documento sin la autorización expresa del INTA.

CERTIFICADO DE CALIBRACIÓN

Certificado INTA Nº 49072

Signatario autorizado:

MINISTERIO DE DEFENSA SECRETARÍA DE ESTADO DE LA DEFENSA INSTITUTO NACIONAL DE TÉCNICA AEROESPACIAL CENTRO DE METROLOGÍA Y CALIBRACIÓN

Página 2 de 4 páginas

Fecha de emisión: 14 de marzo de 2019

[sustituida por firma digital]

Manuel Rodríguez Higuero Jefe del Laboratorio de RF y Microondas

CALIBRATION:

Laboratorio de RF y Microondas Fecha de firma: 14/03/2019 14:57.23 siguiente plataforma. (https://valide.redsara.es/valide/validerFirma/ejecutar.html

juero, Jefe de l digital desde la

RMADO por Manuel Rodriguez Higuero, puede comprobar la validez de la firma digital

RMADO por Manuel

Before any measurement was made, the Unit Under Test was connected to the mains (220 V @ 50 Hz) and kept in Stand-By state at room temperature within the Laboratory for at least 24 hours. Ambient temperature during measurement was 23°C ± 1°C and relative humidity less than 70%.

Mesurement System: the measurement configuration used makes use of the following equipment:

- Directional Coupler, Amplifier Research model DC3002A, serial number 305138
- Directional Coupler, Narda model 3292-2, serial number 03162
- Short Circuit, model INMET 7002, s/n 64671
- Power Meter, Hewlett Packard model 436A, serial number 3103U07436
- Power Sensor, Agilent 8481D, serial number MY51310006
- 30 cm Air Line, Wiltron model SC4934-30, serial number 400001
- 3 m cable, Utiflex serial number FA210B0030007071

Measurement procedure: RF/MPR/7231/302/INTA "Medida del Coeficiente de Reflexión (Source Match) de una Fuente de Radiofrecuencia". The procedure is based on the ripple technique making use of a calibrated airline. FFT is subsequently used in order to filter out the obtained ripple signal, splitting it into two 'processed' ripples.

For measurement at 50 MHz a modification of the measurement procedure is applied which makes use of a long cable in order to induce the ripple signal at the required 'rate of variation' for determination of VRC at low frequencies. No filtering is applied in this case.

UUT configuration: Measurement of Source Match was made for the following setup:

- Nominal Output Level: +0 dBm
- Output mode: CW signal

Measurement results are contained in Table 1 as measured Source Match (VRC) and its associated uncertainty. All working standards and instrumentation used in the calibration are traceable to the National Physical Laboratory (NPL) of the United Kingdom and to the Eidgenössische Institut für Metrologie (METAS) of Switzerland.

The measured values correspond to the moment and ambient conditions under which they were taken. No consideration is made about the stability of the UUT and / or the measurement system.

The expanded uncertainty has been obtained by multiplying the standard uncertainty by a coverage factor k such that the probability of coverage or confidence level is 95.45% (k = 2 in all cases, unless otherwise stated in the table). The standard measurement uncertainty has been determined in accordance with document EA-4/02 M: 2013, 'Assessment of measurement uncertainty in calibrations'.

CERTIFICADO DE CALIBRACIÓN

Certificado INTA Nº 49072

MINISTERIO DE DEFENSA SECRETARÍA DE ESTADO DE LA DEFENSA INSTITUTO NACIONAL DE TÉCNICA AEROESPACIAL CENTRO DE METROLOGÍA Y CALIBRACIÓN Página 3 de 4 páginas

Fecha de emisión: 14 de marzo de 2019

Signatario autorizado:

[sustituida por firma digital]

Manuel Rodríguez Higuero Jefe del Laboratorio de RF y Microondas

<u>Table 1</u>

Frequency (GHz)	Source Match (VRC)	Coverage factor k	Uncertainty (±)	
2	0.039	2.11	0.012	
3	0.047	2.13	0.013	
4	0.063	2.11	0.015	
5	0.048	2.21	0.015	
6	0.074	2.09	0.017	
7	0.043	2.28	0.018	
8	0.066	2.21	0.022	
9	0.084	2.05	0.027	
10	0.079	2.06	0.019	
11	0.141	2.00	0.047	
12	0.106	2.02	0.033	
12.4	0.096	2.02	0.035	
13	0.042	2.28	0.021	
14	0.035	2.10	0.015	
15	0.095	2.01	0.033	
16	0.084	2.11	0.034	
17	0.081	2.18	0.033	
18	0.056	2.15	0.025	

Finally a graphical representation of the parameter under test is included. It is intended for information purposes only and it is not part of the content of this certificate as regards measured values and their associated uncertainty (the values contained in the tables always prevail).

CERTIFICADO DE CALIBRACIÓN

Certificado INTA Nº 49072

MINISTERIO DE LA DEFENSA SECRETARÍA DE ESTADO DE LA DEFENSA INSTITUTO NACIONAL DE TÉCNICA AEROESPACIAL CENTRO DE METROLOGÍA Y CALIBRACIÓN

FIRMADO por Manuel Rodriguez Higuero, Jefe de Laboratorio de RF y Microondas Fecha de firma: 14/03/2019 14:57.23 Se puede comprobar la validez de la firma digital desde la siguiente plataforma. (https://valide.redsara.es/valide/validarFirma/ejecutar.html

Página <u>4</u> de <u>4</u> páginas

Fecha de emisión: 14 de marzo de 2019

Signatario autorizado:

[sustituida por firma digital]

Manuel Rodríguez Higuero Jefe del Laboratorio de RF y Microondas

Cliente: Laboratorio de RF y Microondas

Modelo: HP 83712A Nº de serie: 3339A00223

14/03/2019

Frec (GHz)	IL línea	u IL línea	IL acopl	u IL acopl	Γ corto	$u\Gammacorto$	Γ g corr	k	uГg	SWR corr	Гg	D (dB)	u D	D eff	ТРМ	u TPM	TPm eff	Γ line	u Г line	Γ line eff
2	0.077	0.010	0 217	0.021	0.004	0.004	0 0 2 0	2 1 1	0 0 1 2	1 0 9	0 020	22.4	0.012	0.025	0.025	0.017	0 0 2 9	0.001	0.002	0.002
2	0.077	0.010	0.317	0.031	0.334	0.004	0.039	2.11	0.012	1.00	0.039	33.4	0.013	0.025	0.035	0.017	0.038	0.001	0.003	0.003
3	0.095	0.016	0.375	0.031	0.994	0.004	0.047	2.13	0.013	1.10	0.047	33.5	0.013	0.025	0.022	0.017	0.028	0.002	0.003	0.003
4	0.111	0.017	0.340	0.031	0.993	0.004	0.063	2.11	0.015	1.13	0.063	35.4	0.012	0.021	0.026	0.017	0.031	0.003	0.003	0.004
5	0.125	0.016	0.327	0.031	0.993	0.004	0.048	2.21	0.015	1.10	0.048	34.1	0.013	0.023	0.016	0.017	0.023	0.003	0.003	0.004
6	0.138	0.017	0.401	0.031	0.993	0.004	0.074	2.09	0.017	1.16	0.074	40.7	0.017	0.020	0.019	0.017	0.026	0.005	0.003	0.006
7	0.150	0.027	0.449	0.031	0.993	0.004	0.043	2.28	0.018	1.09	0.043	29.7	0.020	0.038	0.032	0.017	0.036	0.005	0.003	0.005
8	0.161	0.032	0.420	0.031	0.993	0.004	0.066	2.21	0.022	1.14	0.066	29.4	0.021	0.040	0.029	0.017	0.033	0.004	0.003	0.005
8	0 161	0.032	0 420	0.031	0 993	0 004	0.066	2 21	0 022	1 14	0 066	29.4	0 021	0 040	0 029	0.017	0 033	0 004	0 003	0.005
0	0.172	0.036	0.406	0.045	0.000	0.004	0.000	2.21	0.022	1.11	0.000	27.0	0.027	0.052	0.069	0.020	0.000	0.004	0.002	0.000
10	0.172	0.030	0.400	0.040	0.000	0.004	0.004	2.05	0.027	1.10	0.004	27.0	0.027	0.002	0.000	0.020	0.071	0.003	0.003	0.004
10	0.101	0.030	0.420	0.040	0.993	0.004	0.079	2.00	0.019	1.17	0.079	37.0	0.030	0.039	0.013	0.020	0.024	0.003	0.003	0.004
11	0.188	0.027	0.494	0.040	0.993	0.005	0.141	2.00	0.047	1.33	0.141	23.7	0.047	0.081	0.033	0.020	0.039	0.001	0.003	0.003
12	0.199	0.033	0.499	0.042	0.992	0.004	0.106	2.02	0.033	1.24	0.106	30.1	0.056	0.064	0.053	0.020	0.057	0.003	0.003	0.004
12	0.199	0.033	0.499	0.042	0.992	0.004	0.106	2.02	0.033	1.24	0.106	30.1	0.056	0.064	0.053	0.020	0.057	0.003	0.003	0.004
12.4	0.203	0.054	0.473	0.067	0.992	0.004	0.096	2.02	0.035	1.21	0.096	25.2	0.083	0.099	0.048	0.035	0.059	0.004	0.004	0.005
13	0.208	0.042	0.442	0.054	0.993	0.004	0.042	2.28	0.021	1.09	0.042	30.0	0.064	0.072	0.053	0.030	0.060	0.006	0.003	0.006
14	0.216	0.042	0.458	0.062	0.992	0.004	0.035	2.10	0.015	1.07	0.035	27.2	0.056	0.071	0.088	0.030	0.093	0.009	0.003	0.010
15	0.224	0.054	0.523	0.053	0.992	0.004	0.095	2.01	0.033	1.21	0.095	23.4	0.055	0.087	0.054	0.029	0.062	0.011	0.003	0.011
16	0.231	0.049	0.581	0.050	0.992	0.004	0.084	2.11	0.034	1.18	0.084	24.1	0.062	0.088	0.044	0.029	0.053	0.011	0.003	0.011
17	0.238	0.042	0.575	0.049	0.991	0.004	0.081	2.18	0.033	1.18	0.081	31.6	0.071	0.076	0.023	0.029	0.037	0.012	0.003	0.012
18	0.245	0.033	0.545	0.057	0.993	0.004	0.056	2.15	0.025	1.12	0.056	25.2	0.063	0.084	0.058	0.029	0.065	0.014	0.004	0.015

Nº medidas

5

Modelo: HP 83712A Nº de serie: 3339A00223

14/03/2019

E max (+)	E max (-)	Гgmax	E min (+)	E min (-)	Гgmin	u vect (U ₁)	u alg (U ₂)	U_3	k ₃	Gr. Libertad	k95.45-k ₃	U_4	U₅	σ	U ₆	u comb	k	и ехр Гд
1.08170	1.00341	0.043	0.99680	0.93340	0.035	0.004	0.005	0.004	2.029	88	0.0001	0.0001	0.0000	0.008	0.004	0.005	2.11	0.012
1.09675	1.00394	0.052	0.99617	0.92051	0.042	0.005	0.005	0.004	2.033	77	0.0001	0.0002	0.0001	0.009	0.004	0.006	2.13	0.013
1.13275	1.00504	0.071	0.99495	0.89407	0.056	0.007	0.005	0.004	2.037	69	-0.0001	0.0002	0.0001	0.010	0.005	0.007	2.11	0.015
1.09963	1.00492	0.053	0.99516	0.91746	0.043	0.005	0.005	0.004	2.025	101	0.0000	0.0002	0.0001	0.011	0.005	0.007	2.21	0.015
1.15471	1.00725	0.083	0.99255	0.87745	0.065	0.009	0.005	0.004	2.033	76	0.0003	0.0003	0.0001	0.011	0.005	0.008	2.09	0.017
1.09073	1.00635	0.048	0.99419	0.92848	0.038	0.005	0.005	0.004	2.039	65	0.0001	0.0002	0.0001	0.014	0.006	0.008	2.28	0.018
1.14118	1.00667	0.077	0.99362	0.89288	0.058	0.010	0.005	0.004	2.053	48	0.0001	0.0002	0.0002	0.016	0.007	0.010	2.21	0.022
1.14118	1.00667	0.077	0.99362	0.89288	0.058	0.010	0.005	0.004	2.053	48	0.0001	0.0002	0.0002	0.016	0.007	0.010	2.21	0.022
1.19108	1.00719	0.105	0.99357	0.87308	0.069	0.018	0.005	0.004	2.101	26	0.0001	0.0004	0.0003	0.015	0.007	0.013	2.05	0.027
1.16537	1.00635	0.091	0.99364	0.87422	0.069	0.011	0.005	0.004	2.122	22	-0.0022	0.0004	0.0003	0.011	0.005	0.009	2.06	0.019
1.32937	1.00788	0.188	0.99223	0.80108	0.112	0.038	0.005	0.005	2.129	21	-0.0030	0.0007	0.0004	0.014	0.006	0.023	2.00	0.047
1.23868	1.00777	0.136	0.99280	0.84650	0.086	0.025	0.005	0.004	2.076	34	0.0005	0.0005	0.0004	0.016	0.007	0.016	2.02	0.033
1.23868	1.00777	0.136	0.99280	0.84650	0.086	0.025	0.005	0.004	2.076	34	0.0005	0.0005	0.0004	0.016	0.007	0.016	2.02	0.033
1.22961	1.00942	0.129	0.99210	0.86248	0.076	0.026	0.005	0.004	2.147	18	0.0016	0.0007	0.0006	0.017	0.007	0.017	2.02	0.035
1.09543	1.00808	0.051	0.99347	0.93325	0.035	0.008	0.005	0.004	2.135	20	-0.0015	0.0003	0.0002	0.016	0.007	0.009	2.28	0.021
1.08760	1.01201	0.044	0.99106	0.94233	0.028	0.008	0.005	0.004	2.100	26	0.0009	0.0003	0.0002	0.010	0.004	0.007	2.10	0.015
1.22903	1.01527	0.127	0.98710	0.86066	0.075	0.026	0.005	0.004	2.112	23	0.0024	0.0006	0.0006	0.013	0.006	0.016	2.01	0.033
1.19652	1.01466	0.110	0.98769	0.87590	0.067	0.021	0.005	0.004	2.106	25	-0.0013	0.0005	0.0005	0.023	0.010	0.016	2.11	0.034
1.18332	1.01526	0.101	0.98654	0.87675	0.066	0.018	0.005	0.004	2.090	29	0.0005	0.0005	0.0004	0.024	0.011	0.015	2.18	0.033
1.13771	1.01789	0.072	0.98598	0.91080	0.045	0.013	0.005	0.004	2.098	27	-0.0012	0.0004	0.0002	0.018	0.008	0.012	2.15	0.025

24. Annex V – Calibration certificate from EIM/NQIS Greece

Αριθμός πιστοποιητικού /Certificate number :EHF-18-011-D

Εκδόθηκε από / Issued by : Ελληνικό Ινστιτούτο Μετρολογίας Hellenic Institute of Metrology Εργαστήριο Υψηλών Συχνοτήτων Laboratory of High Frequency

BI.ΠΕ. Θεσσαλονίκης, Ο.Τ.45 T.K. 57022 – Θεσσαλονίκη Industr. Area Thessaloniki, Block 45 GR 57022 Thessaloniki Τηλ./Tel. +030 2310 569999, Fax +030 2310 569996 e-mail: <u>gkrik@eim.gr</u>

INTA (Instituto Nacional de Técnica Aeroespacial), Centro de Metrología y Calibración – Edificio B-15 Ctra. a Ajalvir, p.k. 4,5, 28850 Torrejón de Ardoz (Madrid), SPAIN

Kωδικός αντικειμένου Item Code Περιγραφή: Description:

Πελάτης:

Customer:

Γεννήτρια σύνθεσης σημάτων CW

Synthesized CW generator

Κατασκευαστής:		Hewlett Packard					
Manufacturer:							
Τύπος:		83712A					
Type:							
Αριθμός Σειράς:		3339 \ 00223					
Serial Number:		55571800225					
Ημερομηνία Παραλα	βής:	30.05.2018	20.05.2018				
Date of receipt:		30-03-2018					
Ημερομηνία Διακρίβο	ωσης:	15/06 21/6/2018					
Date of Calibration:		15/00 - 21/0/2018					
Σφραγίδα / Seal :	Ημερομηνία έκδοσης Date of issue:	Υπεύθυνος Διακρίβωσης /	Υπεύθυνος Εργαστηρίου /				
	Duic of issue.	Person Responsible:	Laboratory Head:				

Hunde

Mucher

26-04-2019

Γ. Κρικέλας

Γ. Κρικέλας

Δεν επιτρέπεται η αναπαραγωγή του πιστοποιητικού αυτού παρά μόνο καθ' ολοκληρία, εκτός αν δοθεί γραπτή έγκριση από το Ελληνικό Ινστιτούτο Μετρολογίας και το εργαστήριο που το εκδίδει. Πιστοποιητικά Διακρίβωσης μη φέροντα σφραγίδα και υπογραφή δεν έχουν ισχύ. Αντίγραφο του παρόντος πιστοποιητικού θα διατηρηθεί στο εργαστήριο που το εκδίδει για μία περίοδο τουλάχιστο δέκα ετών. Τα αποτελέσματα αφορούν μόνο τα αντικείμενα που έχουν διακριβωθεί.

This certificate may not be reproduced other than in full, except with the prior written approval of both the Hellenic Institute of Metrology and the issuing laboratory. Calibration Certificates without seal and signature are not valid. A copy of this certificate will be kept at the issuing laboratory for a period of at least ten years. The results concern only the calibrated items.

Συνθήκες Διακρίβωσης	Από	Έως	Αβεβαιότητα
Ambient Conditions	From	То	Uncertainty
Θερμοκρασία – Temperature [^{o}C] :	22.6	24.0	0.2
Σχετική Υγρασία – <i>Relative Humidity</i> [%]:	65	79	2
Πίεση Αέρα - Air Pressure [hPa] :			

Κατάσταση αντικειμένου προς διακρίβωση /Condition of object to be calibrated :

Η συσκευή παραλήφθηκε σε καλή κατάσταση.

The device has been received in good condition.

Διαδικασία Διακρίβωσης / Calibration Procedure:

Η συσκευή αποθηκεύθηκε στο χώρο του εργαστηρίου για το απαιτούμενο χρονικό διάστημα πριν τη διαδικασία διακρίβωσης. Το χρονικό αυτό διάστημα δεν ήταν μικρότερο από 24 ώρες. Η διακρίβωση πραγματοποιήθηκε σύμφωνα με την «τεχνική έγχυσης»: μια δεύτερη γεννήτρια χρησιμοποιείται σε συνδυασμό με την υπό έλεγχο γεννήτρια (DUT), συνδεδεμένη διαμέσου μια κατευθυντικής γέφυρας ή ενός κατευθυντικού συζεύκτη. Η δεύτερη γεννήτρια «εγχέει» ένα σήμα που έχει μια μικρή, σταθερή, απόκλιση συχνότητας (για παράδειγμα 10Hz) από τη συχνότητα της εξόδου του DUT. Η διαφορά στη συχνότητα πρέπει να είναι εντός του εύρους ζώνης ελέγχου του ελέγχου πλάτους. Το αρχικό και ανακλώμενο σήμα προστίθενται και αφαιρούνται με ένα ρυθμό 10Hz. Το προκύπτον σήμα ανιχνεύεται με έναν αναλυτή φάσματος σε τρόπο λειτουργίας «μηδενικού εύρους», συνδεδεμένου στην τρίτη θύρα της γέφυρας/του συζεύκτη. Η μεταβολή του πλάτους στο χρόνο παρατηρείται με τη χρήση των δρομέων για τη μέτρηση των ελαχίστων και μεγίστων. Με αντικατάσταση του DUT με ένα ανοιχτοκύκλωμα κι ένα βραχυκύκλωμα μπορεί επίσης να μετρηθεί κι ένα επίπεδο αναφοράς. Ρυθμίζοντας τον αναλυτή φάσματος το μονάδες τάσης, ο Συντελεστής Ανάκλασης Τάσης (VRC) μπορεί να υπολογισθεί ως εξής: $ρ_{\rm i}=Z_{\rm DUT}/Z_{\rm max}$. Όπου $Z_{\rm DUT} = μισό (μέγιστο – ελάχιστο) σήμα με συνδεδεμένο το ΔUT και <math>Z_{\rm max} = μέσο σήμα, με συνδεδεμένο ανοιχτοκύκλωμα και βραχυκύκλωμα.$

Ο εξοπλισμός που χρησιμοποιήθηκε για τη διακρίβωση αποτελούνταν από: 1) Γεννήτρια HP 83630A ($\Delta 1/0051$), 2) Αναλυτή φάσματος Hewlett Packard 8566B ($\Delta 1/0040$), 3) Κατευθυντική γέφυρα Hewlett Packard 86205A ($\Delta 1/1690$), 4) Κατευθυντικός συζεύκτης Krytar 0995-0098 ($\Delta 1/3200$), 5) Θηλυκό ανοιχτοκύκλωμα ($\Delta 1/1269a$), 6) Θηλυκό βραχυκύκλωμα ($\Delta 1/1269d$), 7) Καλώδιο 11500C ($\Delta 1/1284$), 8) Καλώδιο 11500D ($\Delta 1/1285$), 9) Καλώδιο 11500E ($\Delta 1/1286$), 10) Καλώδιο 11500F ($\Delta 1/1286$), 11) Προσαρμογέας HP 3.5mm (f-f) ($\Delta 1/3208$), 12) Προσαρμογέας H&S 33 N-SMA-50-1/NE, N(m)-SMA(f) ($\Delta 1/2067$), 13) Προσαρμογέας HP N(m-m) 1250-1475 ($\Delta 1/1871$), 14) Προσαρμογέας HP 1250-1745 3.5mm(f)-N(f)

The Device Under Test was kept in the laboratory environment for the required time interval prior to the calibration. This time interval was not less than 24 hours. The calibration was conducted according to the "injection technique": a second generator is used in combination with the DUT, connected via a directional bridge or a directional coupler. The second generator injects a signal which has a small fixed frequency offset (for example 10Hz) from the DUT's output frequency. The difference in frequency should be within the control bandwidth of the level control. The original and reflected signals will add

Δεν επιτρέπεται η αναπαραγωγή του πιστοποιητικού αυτού παρά μόνο καθ' ολοκληρία, εκτός αν δοθεί γραπτή έγκριση από το Ελληνικό Ινστιτούτο Μετρολογίας και το εργαστήριο που το εκδίδει. Πιστοποιητικά Διακρίβωσης μη φέροντα σφραγίδα και υπογραφή δεν έχουν ισχύ. Αντίγραφο του παρόντος πιστοποιητικού θα διατηρηθεί στο εργαστήριο που το εκδίδει για μία περίοδο τουλάχιστο δέκα ετών. Τα αποτελέσματα αφορούν μόνο τα αντικείμενα που έχουν διακριβωθεί.

This certificate may not be reproduced other than in full, except with the prior written approval of both the Hellenic Institute of Metrology and the issuing laboratory. Calibration Certificates without seal and signature are not valid. A copy of this certificate will be kept at the issuing laboratory for a period of at least ten years. The results concern only the calibrated items.

Αριθμός πιστοποιητικού /Certificate number :EHF-18-011-D

and subtract at a rate of 10 Hz. The resultant signal is detected with a spectrum analyzer in 'zero span' mode, connected to the third port of the bridge/coupler. The variation in amplitude with time is observed using the cursors to measure the maxima and minima. With the UUT replaced by an open and a short, a reference level can also be measured. Configuring the spectrum analyzer to report in units of voltage, the Voltage Reflection Coefficient can be calculated as: $\rho_l = Z_{DUT}/Z_{max}$. Where $Z_{DUT} = half (max - min)$ signal with UUT connected and $Z_{max} =$ mean signal with Open & Short connected.

For the calibration the following standards have been used: 1) Generator HP 83630A (D1/0051), 2) Spectrum analyzer Hewlett Packard 8566B (D1/0040), 3) Directional bridge Hewlett Packard 86205A (D1/1690), 4) Directional coupler Krytar 0995-0098 (D1/3200), 5) Female open (D1/1269a), 6) Female short (D1/1269d), 7) Cable 11500C (D1/1284), 8) Cable 11500D (D1/1285), 9) Cable 11500E (D1/1286), 10) Cable 11500F (D1/1287), 11) Adapter HP 3.5mm (f-f) (Δ 1/3208), 12) Adapter H&S 33 N-SMA-50-1/NE, N(m)-SMA(f) (Δ 1/2067), 13) Adapter HP N(m-m) 1250-1475 (D1/1871), 14) Adapter HP 1250-1745 3.5mm(f)-N(f)

Ιχνηλασιμότητα / Traceability:

Οι μετρήσεις είναι ιχνηλάσιμες στα Εθνικά Πρότυπα του ΕΙΜ καθώς και στα Εθνικά Πρότυπα μελών της EURAMET, του NIST και άλλων αναγνωρισμένων Εθνικών Ινστιτούτων Μετρολογίας.

Traceable to EIM's National Standards, as well as to National Standards administered by EURAMET members, NIST or other recognized National Standards.

Αβεβαιότητα / Uncertainty:

Η αβεβαιότητα που αναφέρεται είναι το γινόμενο της τυπικής αβεβαιότητας (u) με τον συντελεστή κάλυψης k = 2 (διευρυμένη αβεβαιότητα) και προσδιορίστηκε σύμφωνα με την οδηγία JCGM 100: 2008 "Evaluation of measurement data — Guide to the expression of uncertainty in measurement". Γενικά, η τιμή της μετρούμενης ποσότητας περιέχεται στο προσδιοριζόμενο εύρος με πιθανότητα 95% περίπου. Η εκτίμηση της αναφερόμενης αβεβαιότητας δεν εμπεριέχει ενδεχόμενες μακροπρόθεσμες μεταβολές.

Reported is the expanded uncertainty which results from the standard uncertainty (u) by multiplication with the coverage factor k = 2. It has been evaluated according to the JCGM 100: 2008 "Evaluation of measurement data — Guide to the expression of uncertainty in measurement". Generally, the value of the measuring quantity is found within the attributed interval with a probability of approximately 95%. The reported uncertainty does not include an estimate of long-term variations.

Δεν επιτρέπεται η αναπαραγωγή του πιστοποιητικού αυτού παρά μόνο καθ' ολοκληρία, εκτός αν δοθεί γραπτή έγκριση από το Ελληνικό Ινστιτούτο Μετρολογίας και το εργαστήριο που το εκδίδει. Πιστοποιητικά Διακρίβωσης μη φέροντα σφραγίδα και υπογραφή δεν έχουν ισχύ. Αντίγραφο του παρόντος πιστοποιητικού θα διατηρηθεί στο εργαστήριο που το εκδίδει για μία περίοδο τουλάχιστο δέκα ετών. Τα αποτελέσματα αφορούν μόνο τα αντικείμενα που έχουν διακριβωθεί.

This certificate may not be reproduced other than in full, except with the prior written approval of both the Hellenic Institute of Metrology and the issuing laboratory. Calibration Certificates without seal and signature are not valid. A copy of this certificate will be kept at the issuing laboratory for a period of at least ten years. The results concern only the calibrated items.

Αριθμός πιστοποιητικού /Certificate number :EHF-18-011-D

Αποτελέσματα Διακρίβωσης / Calibration Results :

<u>ΠΙΝΑΚΑΣ 1 / TABLE 1</u>

Συντελεστής ανάκλασης τάσης / Voltage Reflection Coefficient (VRC)

Συχνότητα / Frequency (GHz)	Συντελεστής ανάκλασης τάσης / Voltage Reflection Coefficient (VRC)	Αβεβαιότητα / Uncertainty (CL=95.45%)
0.05	0.0591	0.0092
2	0.0377	0.0094
8	0.089	0.016
12	0.170	0.019
15	0.175	0.019
18	0.110	0.013

Παρατηρήσεις / Comments

ΤΕΛΟΣ ΠΙΣΤΟΠΟΙΗΤΙΚΟΥ / END OF CERTIFICATE

Δεν επιτρέπεται η αναπαραγωγή του πιστοποιητικού αυτού παρά μόνο καθ' ολοκληρία, εκτός αν δοθεί γραπτή έγκριση από το Ελληνικό Ινστιτούτο Μετρολογίας και το εργαστήριο που το εκδίδει. Πιστοποιητικά Διακρίβωσης μη φέροντα σφραγίδα και υπογραφή δεν έχουν ισχύ. Αντίγραφο του παρόντος πιστοποιητικού θα διατηρηθεί στο εργαστήριο που το εκδίδει για μία περίοδο τουλάχιστο δέκα ετών. Τα αποτελέσματα αφορούν μόνο τα αντικείμενα που έχουν διακριβωθεί.

This certificate may not be reproduced other than in full, except with the prior written approval of both the Hellenic Institute of Metrology and the issuing laboratory. Calibration Certificates without seal and signature are not valid. A copy of this certificate will be kept at the issuing laboratory for a period of at least ten years. The results concern only the calibrated items.

25. Annex VI – Calibration certificate from SIQ Slovenia

CERTIFIKAT O KALIBRACIJI / CALIBRATION CERTIFICATE

stran / page:					št. dok	umenta / document no:
1 / 11						19P00063
Applicant	INSTITUT CTRA. A A ES-28850	O NA \JAL` TOR	ACIONAL DE TECNIC/ VIR, P.K.4,5 RREJON DE ARDOZ (1	A AEROI	ESPACIAL (INTA)	.)
Owner	INSTITUT(CTRA. A A ES-28850	O NA AJAL' TOR	ACIONAL DE TECNIC/ VIR, P.K.4,5 RREJON DE ARDOZ (I	A AEROI MADRID	ESPACIAL (INTA)	.)
Instrument Manufacturer Type Serial Number Environmental conditior	Synthesize HEWLETT 83712A 3339A0022	ed C\ PAC 23 Jre:	W Generator CKARD 23°C ± 2°C	Rel	ative humidity:	50% ± 20%
Calibration date	Power sup 16. April 20	oply: 018	230V ± 1% - 27. April 2018			
Recommended recalibration Conclusion	27. April 20 The stated for the equ the user ta of use. Complies w All measur manufactu Measured performane	019 I reca lipme aking with s red va irer a value ce of	alibration date is recoment type. The actual reconnected into account the type of specifications. alues lie within the allound given along with the first specifications for a specification for a specification of the specification of the type of the instrument of the type of the specification of the spe	nmended calibratio of applica wable to e measu represen nent.	based on genera n interval shall be ation, frequency a lerance limits as rement results. tative for the over	al experience e defined by and conditions stated by the rall
Izvedel / Performed by:		Potro	dil / Approved by:		Datum / Date:	
BORUT PINTER Senior calibration engineer		MAT. Assis	JAŽ LINDIČ stant to TMT Director		2. April 2019 Ref.: 19/01052	
Pri izvajanju kalibracije so bili uporabljeni etalor katere je bila sledljivost do enot SI preverjena s akreditacijskega organa. Akreditacijski organ ne prevzema nobene odgovorno posledice, ki bi nastale z izdajo tega certifikata o kalibi Certifikat o kalibraciji se brez pisnega dovoljenja labor lahko razmnožuje samo v celoti.	ni, za strani isti za raciji. atorija	S I (Tržaška t: +386 info.m	QL ju bl jana a cesta 2, SI-1000 Ljubljana, Slovenija 6 1 4778 300, f: +386 1 4778 303 neroslovje@siq.si, www.siq.si		The calibration has been per for which the traceability to S the accreditation body. The accreditation body sha consequences that might aris certificate. This calibration certificate sh approval of the laboratory, ex	formed using measurement standards I units has been demonstrated towards all not assume any responsibility for se from the issuance of this calibration hall not be reproduced without written cept in full.

stran / page:

2/11

št. dokumenta / document no: 19P00063

Calibrated parameters:

- 1. Connector pin depth
- 2. Generator Output Voltage Reflection Coefficient

Measurement standards used:

E1	08/509	N9030B PXA
E2	07/100	11691D
E3	07/170A	M1404N
E4	07/121F	Type BNC (f) short
E5	02/266B	04191-85300
E6	07/113B	18N50
E7	07/079	778D

Calibration procedure:

SIQ protokol:	09069P01/2019-04-01	Ref.:	MN601000C MN621000C MN624000C	04/2015-09 04/2014-11 02/2018-09

Calibration was carried out by comparison of values indicated, or set, on the item under calibration, with values of measurands, realized with measurement standards.

Abbreviations and symbols:

Parameters marked with an index "s" represent the ("true") value of the item under calibration Parameters marked with index "x" represent values indicated or set on the item under calibration

mv	min. or max allowable value of the measured parameter
(n), N	(relative) expanded measurement uncertainty, expressed as
	double standard uncertainty
ρ	Absolute value of generator voltage reflection coefficient; Γ
VSWR	Voltage Standing Wave Ratio ((1+ρ)/(1-ρ))
	Voltage reflection coefficient uncertainty N(p) must be
	taken in such a manner so that $\boldsymbol{\rho}$ is never negative.
	$\rho \leq mv - N$; compliance with specifications

Limits of error for individual measured parameters are stated along with the measurement results and are calculated from manufacturer's specifications given in: HP 83711, 83712, 83731 and 83732 Synthesized Signal Generator; Calibration Guide; Manual p.n.: 83731-90125; Revision Date: November 1998

 $\rho > mv + N$; non-compliance with specifications

►

stran / page: 3 / 11 št. dokumenta / document no: 19P00063

MEASUREMENT RESULTS

1. Connector pin depth

Connector pin depth is measured relatively to the reference connector. Allowable values are taken from IEEE 287 (GPC).

Connector with pin depth greater than mv max can damage connectors connected to it. Connector with pin depth smaller than mv min can increase reflection.

Connector	depth	Ν	mv min	mv max
	[mm]	[mm]	[mm]	[mm]
RF OUTPUT 50 Ω; N(f)	-0,267	0,021	-0,076	0,000

2. Generator Output Voltage Reflection Coefficient

	Px =	0	dBm		
	f	ρ_gen	N_p_gen	mv	VSWR
_	[MHz]				
	30	0,047	0,023	0,333	1,099
\checkmark	40	0,044	0,022	0,333	1,092
\checkmark	50	0,044	0,020	0,333	1,091
\checkmark	60	0,044	0,017	0,333	1,091
\checkmark	70	0,043	0,017	0,333	1,090
\checkmark	80	0,043	0,018	0,333	1,090
\checkmark	90	0,041	0,020	0,333	1,086
\checkmark	100	0,042	0,023	0,333	1,087
\checkmark	110	0,040	0,021	0,333	1,083
\checkmark	120	0,039	0,018	0,333	1,081
\checkmark	130	0,038	0,017	0,333	1,080
\checkmark	140	0,038	0,017	0,333	1,078
	150	0,037	0,018	0,333	1,076
	160	0,036	0,021	0,333	1,075
	170	0,036	0,019	0,333	1,074
	180	0,035	0,016	0,333	1,073
	190	0,035	0,014	0,333	1,073
	200	0,035	0,013	0,333	1,072
	210	0,034	0,013	0,333	1,071
	220	0,033	0,013	0,333	1,069
	230	0,034	0,013	0,333	1,070
	240	0,033	0,010	0,333	1,068
	250	0,032	0,007	0,333	1,065
	260	0,030	0,004	0,333	1,063
	270	0,029	0,003	0,333	1,060
	280	0,027	0,004	0,333	1,056
	290	0,024	0,007	0,333	1,050
	300	0,020	0,008	0,333	1,041
	310	0,018	0,011	0,333	1,036
	320	0,015	0,013	0,333	1,031
	330	0,014	0,014	0,333	1,028
	340	0,012	0,016	0,333	1,025
\checkmark	350	0,010	0,019	0,333	1,021

stran / page: 4 / 11

f	ρ_gen	N_p_gen	mv	VSWR
[MHz]				
 360	0,008	0,023	0,333	1,016
 370	0,006	0,028	0,333	1,012
 380	0,004	0,024	0,333	1,008
 390	0,002	0,023	0,333	1,004
 400	0,002	0,032	0,333	1,004
 410	0,004	0,027	0,333	1,008
 420	0,006	0,026	0,333	1,013
 430	0,008	0,026	0,333	1,017
 440	0,011	0,029	0,333	1,023
 450	0,014	0,034	0,333	1,028
 460	0,016	0,036	0,333	1,033
 470	0,018	0,033	0,333	1,037
 480	0,019	0,029	0,333	1,039
 490	0,018	0,028	0,333	1,036
 500	0,016	0,028	0,333	1,033
 510	0,016	0,028	0,333	1,033
 520	0,017	0,029	0,333	1,035
 530	0,018	0,029	0,333	1,037
 540	0,021	0,031	0,333	1,042
 550	0,023	0,033	0,333	1,046
 560	0,027	0,032	0,333	1,055
 570	0,030	0,027	0,333	1,063
 580	0,035	0,023	0,333	1,072
 590	0,039	0,019	0,333	1,081
 600	0,044	0,017	0,333	1,092
 610	0,049	0,015	0,333	1,103
 620	0,055	0,015	0,333	1,117
 630	0,060	0,015	0,333	1,127
 640	0,065	0,013	0,333	1,140
 650	0,071	0,011	0,333	1,153
 660	0,076	0,010	0,333	1,165
 670	0,081	0,010	0,333	1,176
 680	0,088	0,011	0,333	1,193
 690	0,094	0,014	0,333	1,208
 700	0,100	0,018	0,333	1,223
 710	0,107	0,019	0,333	1,240
 720	0,110	0,019	0,333	1,246
 730	0,116	0,018	0,333	1,263
 740	0,123	0,019	0,333	1,280
 750	0,129	0,021	0,333	1,296
 760	0,135	0,025	0,333	1,312
 770	0,137	0,029	0,333	1,317
 780	0,146	0,032	0,333	1,342
 790	0,144	0,030	0,333	1,337
 800	0,151	0,028	0,333	1,356
 810	0,154	0,029	0,333	1,363
 820	0,163	0,031	0,333	1,389
 830	0,164	0,036	0,333	1,392
 840	0,174	0,044	0,333	1,421
 850	0,172	0,046	0,333	1,415

stran / page: 5 / 11

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	22 22 16 01 95 78 76 71 59
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	22 22 16 01 95 78 76 71 59
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	22 16 01 95 78 76 71 59
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	16 01 95 78 76 71 59
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	01 95 78 76 71 59
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	95 78 76 71 59
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	78 76 71 59
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	76 71 59
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	59
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	59
√ 950 0,148 0,038 0,333 1,34 √ 900 0,148 0,038 0,333 1,34	10
000 0440 0.000 0.000 4.00	49
$\sqrt{960}$ 0,148 0,038 0,333 1,34	49
√ 970 0,147 0,040 0,333 1,34	44
√ 980 0,145 0,043 0,333 1,33	38
√ 990 0,139 0,047 0,333 1,32	22
√ 1000 0,020 0,041 0,333 1,04	40
$\sqrt{1010}$ 0,009 0,036 0,333 1,0 ²	18
√ 1020 0,010 0,042 0,333 1,02	21
$\sqrt{1030}$ 0,012 0,041 0,333 1,02	24
√ 1040 0,012 0,038 0,333 1,02	25
$\sqrt{1050}$ 0,014 0,034 0,333 1,02	28
$\sqrt{1060}$ 0,015 0,030 0,333 1,03	30
√ 1070 0,016 0,029 0,333 1,03	32
√ 1080 0,016 0,029 0,333 1,03	34
√ 1090 0,018 0,031 0,333 1,03	36
√ 1100 0,018 0,036 0,333 1,03	37
√ 1110 0,020 0,035 0,333 1,04	40
√ 1120 0,021 0,032 0,333 1,04	42
√ 1130 0,021 0,028 0,333 1,0 ⁴	43
$\sqrt{1140}$ 0,022 0,023 0,333 1,04	45
V 1150 0,022 0,021 0,333 1,04	45
V 1160 0,024 0,018 0,333 1,04	48
V 1170 0,024 0,016 0,333 1,05	50
	53
	54
	50
	50
$\sqrt{1220}$ 0,020 0,005 0,555 1,05 $\sqrt{1220}$ 0,020 0,007 0,222 1,06	00
$\sqrt{1230}$ 0,030 0,007 0,353 1,00 $\sqrt{1240}$ 0.021 0.010 0.222 1.00	61
	64
	60
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	67
$\sqrt{1270}$ 0,000 0,022 0,000 1,00	22
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	71
$\sqrt{1290}$ 0,034 0,032 0,035 1,07 $\sqrt{1300}$ 0.032 0.037 0.333 1.06	67
$\sqrt{1310}$ 0.052 0.057 0.055 1.00 $\sqrt{1310}$ 0.035 0.037 0.333 1.00	72
$\sqrt{1320}$ 0.036 0.034 0.005 1.07	75
$\sqrt{1330}$ 0.036 0.036 0.333 1.07	76
$\sqrt{1340}$ 0.037 0.039 0.333 1.07	77
√ 1350 0,037 0,044 0,333 1.07	78

stran / page: 6 / 11

	f	p_gen	N_p_gen	mv	VSWR
	[MHz]				
	1360	0,039	0,052	0,333	1,080
	1370	0,039	0,059	0,333	1,081
	1380	0,036	0,068	0,333	1,076
	1390	0,039	0,061	0,333	1,080
	1400	0,037	0,057	0,333	1,076
	1410	0,039	0,056	0,333	1,082
	1420	0,038	0,056	0,333	1,080
	1430	0,038	0,058	0,333	1,079
	1440	0,039	0,064	0,333	1,081
	1450	0,039	0,071	0,333	1,080
	1460	0,039	0,079	0,333	1,081
	1470	0,040	0,078	0,333	1,084
	1480	0,041	0,068	0,333	1,086
	1490	0,042	0,059	0,333	1,087
	1500	0,042	0,051	0,333	1,088
	1510	0,043	0,048	0,333	1,091
	1520	0,045	0,047	0,333	1,094
	1530	0,045	0,046	0,333	1,095
	1540	0,047	0,046	0,333	1,099
	1550	0,046	0,040	0,333	1,097
	1560	0,048	0,031	0,333	1,101
	1570	0,049	0,023	0,333	1,103
	1580	0,050	0,016	0,333	1,106
	1590	0,052	0,012	0,333	1,109
	1600	0,053	0,009	0,333	1,111
	1610	0,053	0,009	0,333	1,112
	1620	0,058	0,012	0,333	1,123
	1630	0,055	0,016	0,333	1,116
	1640	0,057	0,018	0,333	1,121
	1650	0,059	0,021	0,333	1,125
	1660	0,061	0,025	0,333	1,130
	1670	0,062	0,030	0,333	1,133
	1680	0,065	0,036	0,333	1,139
	1690	0,067	0,044	0,333	1,143
	1700	0,066	0,056	0,333	1,141
	1710	0,067	0,061	0,333	1,144
	1720	0,067	0,060	0,333	1,143
	1730	0,071	0,061	0,333	1,154
	1740	0,066	0,058	0,333	1,142
V	1750	0,068	0,059	0,333	1,147
V	1760	0,069	0,064	0,333	1,148
V	1770	0,068	0,070	0,333	1,146
	1780	0,067	0,078	0,333	1,145
	1790	0,069	0,086	0,333	1,148
V	1800	0,067	0,072	0,333	1,143
	1810	0,065	0,065	0,333	1,139
V	1820	0,061	0,056	0,333	1,129
V	1830	0,061	0,050	0,333	1,129
V	1840	0,060	0,046	0,333	1,128
	1850	0,058	0,042	0,333	1,123

stran / page: 7 / 11

	f	p_gen	N_p_gen	mv	VSWR
	[MHz]				
\checkmark	1860	0,054	0,042	0,333	1,114
\checkmark	1870	0,055	0,041	0,333	1,117
	1880	0,049	0,034	0,333	1,102
	1890	0,048	0,025	0,333	1,101
	1900	0,044	0,017	0,333	1,093
	1910	0,044	0,010	0,333	1,092
	1920	0,040	0,006	0,333	1,083
	1930	0,037	0,007	0,333	1,078
	1940	0,035	0,013	0,333	1,072
	1950	0,033	0,021	0,333	1,068
	1960	0,031	0,032	0,333	1,064
	1970	0,028	0,033	0,333	1,058
	1980	0,025	0,037	0,333	1,052
	1990	0,022	0,042	0,333	1,045
	2000	0,022	0,049	0,333	1,045
	2100	0,027	0,031	0,333	1,055
	2200	0,025	0,041	0,333	1,050
	2300	0,020	0,039	0,333	1,041
	2400	0,019	0,058	0,333	1,039
	2500	0,027	0,051	0,333	1,056
	2600	0,041	0,043	0,333	1,086
	2700	0,047	0,041	0,333	1,099
	2800	0,041	0,036	0,333	1,086
V	2900	0,036	0,025	0,333	1,075
V	3000	0,036	0,026	0,333	1,076
V	3100	0,041	0,024	0,333	1,086
V	3200	0,043	0,029	0,333	1,089
V	3300	0,045	0,053	0,333	1,095
V	3400	0,045	0,047	0,333	1,093
N	3500	0,034	0,048	0,333	1,070
N	3600	0,024	0,051	0,333	1,050
N	3700	0,038	0,041	0,333	1,078
N	3800	0,058	0,024	0,333	1,123
N	3900	0,063	0,016	0,333	1,134
N	4000	0,064	0,005	0,333	1,136
N	4100	0,067	0,006	0,333	1,143
N	4200	0,071	0,012	0,333	1,154
N	4300	0,073	0,018	0,333	1,158
N	4400	0,080	0,021	0,333	1,174
N	4500	0,087	0,039	0,333	1,191
N	4600	0,082	0,039	0,333	1,178
N	4700	0,066	0,060	0,333	1,141
N	4800	0,040	0,053	0,333	1,083
N	4900	0,033	0,066	0,333	1,068
N	5000	0,044	0,064	0,333	1,092
N	5100	0,050	0,059	0,333	1,106
N	5200	0,040	0,002	0,000	1,097
N N	5300	0,047	0,045	0,000	1,099
N	0400	0,075	0,040	0,000	1,102

št. dokumenta / document no: 19P00063

 $\sqrt{}$

5500

0,100

0,031

0,333

1,221

stran / page: 8 / 11

	f	p gen	Νρgen	mv	VSWR
	[MHz]	/0	_/ _0		
	5600	0.096	0.027	0.333	1.211
	5700	0,072	0,047	0,333	1,156
	5800	0.068	0.049	0.333	1.147
	5900	0.091	0.061	0.333	1.200
	6000	0.099	0.100	0.333	1.220
	6100	0.079	0.080	0.333	1,172
	6200	0.062	0.095	0.333	1,133
	6300	0.054	0.105	0.333	1,114
	6400	0.039	0.081	0.333	1.081
	6500	0.025	0.077	0.333	1.050
	6600	0.047	0.071	0.333	1.099
	6700	0.063	0.049	0.333	1.134
	6800	0.061	0.052	0.333	1.131
	6900	0.037	0.068	0.333	1.076
	7000	0.013	0.075	0.333	1.026
	7100	0.008	0.087	0.333	1.016
	7200	0.018	0.105	0.333	1.038
	7300	0.033	0.108	0.333	1.068
	7400	0.045	0.104	0.333	1.094
	7500	0.057	0.075	0.333	1.120
	7600	0.071	0.076	0.333	1.152
	7700	0.071	0.046	0.333	1.154
	7800	0.049	0.031	0.333	1,103
	7900	0.016	0.030	0.333	1.032
	8000	0.055	0.042	0.333	1.117
	8100	0.098	0.073	0.333	1.217
	8200	0,109	0.056	0.333	1.245
	8300	0.109	0.065	0.333	1.244
	8400	0,098	0,046	0,333	1,217
	8500	0,077	0,034	0,333	1,168
	8600	0,051	0,024	0,333	1,107
	8700	0,048	0,022	0,333	1,101
	8800	0,078	0,031	0,333	1,170
	8900	0,103	0,055	0,333	1,230
	9000	0,106	0,050	0,333	1,236
	9100	0,098	0,058	0,333	1,217
	9200	0,089	0,055	0,333	1,194
	9300	0,090	0,046	0,333	1,198
	9400	0,099	0,034	0,333	1,219
	9500	0,099	0,019	0,333	1,219
	9600	0,077	0,006	0,333	1,168
	9700	0,064	0,014	0,333	1,136
	9800	0,079	0,031	0,333	1,171
	9900	0,107	0,037	0,333	1,239
\checkmark	10000	0,117	0,061	0,333	1,264
	10100	0,106	0,056	0,333	1,238
\checkmark	10200	0,090	0,069	0,333	1,199
\checkmark	10300	0,077	0,080	0,333	1,166
\checkmark	10400	0,083	0,070	0,333	1,181
	10500	0,084	0,107	0,333	1,183

stran / page: 9 / 11

	f	ρ gen	Νρ gen	mv	VSWR
	[MHz]	/	_, _0		
	10600	0,080	0,082	0,333	1,174
\checkmark	10700	0,075	0,105	0,333	1,162
	10800	0,086	0,115	0,333	1,188
	10900	0,101	0,099	0,333	1,225
	11000	0,121	0,132	0,333	1,275
	11100	0,144	0,104	0,333	1,336
	11200	0,151	0,109	0,333	1,356
	11300	0,142	0,090	0,333	1,331
	11400	0,120	0,086	0,333	1,273
\checkmark	11500	0,081	0,063	0,333	1,177
	11600	0,040	0,064	0,333	1,083
	11700	0,012	0,044	0,333	1,024
\checkmark	11800	0,028	0,044	0,333	1,057
\checkmark	11900	0,070	0,044	0,333	1,151
\checkmark	12000	0,112	0,037	0,333	1,253
\checkmark	12100	0,138	0,038	0,333	1,319
\checkmark	12200	0,135	0,026	0,333	1,311
\checkmark	12300	0,115	0,027	0,333	1,259
\checkmark	12400	0,061	0,032	0,333	1,131
	12500	0,022	0,042	0,333	1,045
\checkmark	12600	0,044	0,058	0,333	1,093
\checkmark	12700	0,063	0,096	0,333	1,135
\checkmark	12800	0,058	0,087	0,333	1,122
\checkmark	12900	0,040	0,130	0,333	1,082
\checkmark	13000	0,034	0,106	0,333	1,070
\checkmark	13100	0,041	0,124	0,333	1,085
	13200	0,063	0,120	0,333	1,134
\checkmark	13300	0,083	0,100	0,333	1,181
\checkmark	13400	0,076	0,105	0,333	1,164
\checkmark	13500	0,042	0,078	0,333	1,088
\checkmark	13600	0,036	0,058	0,333	1,074
\checkmark	13700	0,067	0,047	0,333	1,144
\checkmark	13800	0,081	0,036	0,333	1,176
	13900	0,074	0,024	0,333	1,161
	14000	0,062	0,030	0,333	1,132
	14100	0,046	0,030	0,333	1,097
	14200	0,049	0,032	0,333	1,103
	14300	0,059	0,042	0,333	1,125
	14400	0,058	0,045	0,333	1,123
	14500	0,036	0,058	0,333	1,076
	14600	0,029	0,060	0,333	1,060
	14700	0,045	0,072	0,333	1,095
	14800	0,066	0,114	0,333	1,142
	14900	0,081	0,096	0,333	1,177
	15000	0,097	0,109	0,333	1,214
	15100	0,116	0,116	0,333	1,262
V	15200	0,119	0,095	0,333	1,269
V	15300	0,089	0,106	0,333	1,196
	15400	0,043	0,067	0,333	1,089
	15500	0,015	0,055	0,333	1,031

stran / page: 10 / 11

	f	ρ_gen	N_p_gen	mv	VSWR
-	[MHz]				
	15600	0,032	0,052	0,333	1,067
	15700	0,045	0,044	0,333	1,094
	15800	0,063	0,068	0,333	1,133
	15900	0,081	0,084	0,333	1,175
	16000	0,092	0,095	0,333	1,202
	16100	0,101	0,109	0,333	1,225
	16200	0,091	0,112	0,333	1,201
	16300	0,059	0,100	0,333	1,126
	16400	0,028	0,109	0,333	1,058
	16500	0,077	0,091	0,333	1,167
	16600	0,119	0,055	0,333	1,271
	16700	0,132	0,050	0,333	1,304
V	16800	0,123	0,033	0,333	1,280
V	16900	0,102	0,045	0,333	1,227
V	17000	0,088	0,059	0,333	1,193
V	17100	0,081	0,073	0,333	1,176
	17200	0,077	0,101	0,333	1,167
	17300	0,078	0,123	0,333	1,168
V	17400	0,082	0,116	0,333	1,178
	17500	0,090	0,154	0,333	1,197
	17600	0,105	0,160	0,333	1,234
	17700	0,124	0,155	0,333	1,283
	17800	0,130	0,184	0,333	1,298
	17900	0,100	0,161	0,333	1,221
	18000	0,072	0,145	0,333	1,155

stran / page: 11 / 11 št. dokumenta / document no: 19P00063

Conclusion:

The item under calibrations was found to comply with manufacturers specifications, as given along with measurement results, for appropriately marked parameters.

Measurement results and their respective uncertainties refer to the measurements carried out during calibration and have no implication to the long term stability of the item.

26. Annex VII – Measurement report from NIS Egypt

ANNEX A

PARTICIPANT REPORT

1. PARTICIPANT INFORMATION

Laboratory Name:	Microwave laboratory
Name of contact person:	Abdel Rahman Salam
Telephone number:	+201063934281
Fax:	+(202) 33867451
E-mail:	Sallam2050@gmail.com
Address:	36 Tersa st. El-Haram El-Giza Egypt

2. MEASUREMENT DATE:

3. ENVIRONMENTAL CONDITIONS

Temperature	:	(23	± 1) °C
Relative Humidity	:	(45	± 1) %

4. STANDARDS USED IN MEASUREMENT

Instrument Name	Manufacturer	Type / Model	Serial Number	Traceability
Directional Bridge	Keysight	86205A	MY31403156	NIST
Directional Coupler	Keysight	773D	MY52180488	NIST
Spectrum analyzer	Rohde & Schwartz	FSP	1164.4391.30	PTB
Signal generator	Rohde & Schwartz	SMB-100A	175957	РТВ

Pin depth

Device	Model	Serial number	Туре	Recession (mm)	Protrusion (mm)
Synthesized CW generator	Hewlett Packard 83712A	3339A00223	Male-port	0.004953	-

5. DESCRIPTION OF MEASUREMENT METHOD

Fig.1. Diagram showing equipment setup.

The voltage reflection coefficient (VRC) of the signal generator is carried on using the injection method technique Fig.1 [1-Fig. 2]. A short description is: An HP synthesized CW generator model 83712A (DUT) feeds 0 dBm output power at frequencies (50MHz, 2 GHz, 8GHz, 12GHz, 15GHz, 18GHz) alternatively to keysight directional bridge model 86205A and keysight directional coupler model 773D both covering a part of the stated frequency range. For Frequency range from 50MHz to 2GHz directional bridge port 1 is connected with UUT HP synthesized CW generator, port 2 is injected by reference R&S signal generator, port 3 is connected with R&S spectrum analyser. For Frequency range from 2GHz to 18GHz directional coupler output port is injected by reference R&S signal generator, input port is connected with UUT HP synthesized CW generator, coupled port is connected with R&S spectrum analyser. For Frequency range from 2GHz to 18GHz directional coupler output port is injected by reference R&S signal generator, input port is connected with UUT HP synthesized CW generator, coupled port is connected with R&S spectrum analyser. The VRC is given by $|\Gamma| = \frac{Z_{UUT}}{Z_{Max}}$, where Z_{UUT} = half (max-min) signal with UUT connected and Z_{Max} = mean signal with open &

short connected at test ports (port 2 of directional bridge, input port of directional coupler) according to the stated frequency. The spectrum analyser is adjusted at zero span (time-domain mode) and a frequency offset of 100 Hz is added for UUT and reference generators in order to detect the maxima and minima signal. The contributions of VRC measurement uncertainty budget are Type A repeatability of the VRC measurements, Type B, the return loss of 86205A bridge or 773D coupler directivity, test port match and the uncertainty with which their values are known, linearity of R&S spectrum analyser, and R&S Signal generator uncertainty [2]. The uncertainty of directivity and test port match are calculated according to [3].

6. MEASUREMENT RESULTS:

Frequency	Voltage Reflection Coefficient of travelling standard @ 0 dBm						
	VRC Magnitude	Uncertainty (CL = 95.45%)	VRC Phase (if measured)	Uncertainty (CL = 95.45%)			
50 MHz	0.043	0.0264	-	-			
2 GHz	0.044	0.0643	-	-			
8 GHz	0.062	0.0634	-	-			
12 GHz	0.145	0.0641	-	-			
15 GHz	0.125	0.0911	-	-			
18 GHz	0.069	0.0924	-	-			

7. UNCERTAINTY BUDGET

7.1. Voltage Reflection Coefficient (VRC) measurement uncertainty budget

Model function: $u_{\Gamma_{DUT}} = D + T \Gamma_{DUT} + M {\Gamma_{DUT}}^2 + R_{\Gamma_{DUT}}$ Frequency: 50 MHz

Output Level (CW) : 0 dBm

Definition of contribution	Expected Value <i>x</i> i	Standard Uncertainty <i>u(xi)</i>	Distribution Function	Sensitivity Coefficient <i>c</i> i	Uncertainty contribution <i>u(y_i)</i>
Measurement Repeatability (Γ_{DUT})	0.043	0.0008	Normal	1	0.0008
Bridge Directivity (D)	0.010	0.0131	Rectangular	1	0.0131
Test port match (M)	0.070	0.0001	Rectangular	1	0.0001
Linearity of spectrum analyser (T)	0.000	0.0005	Rectangular	1	0.0005
Random contributions <i>R</i> _{Γ_{DUT} (Ref. signal generator at 0 dBm)}	0.001	0.0010	Normal	1	0.0010
	0.040	Comb	0.0132		
	0.043	Expar	0.0264		

Model function : $u_{\Gamma_{DUT}} = D + T \Gamma_{DUT} + M {\Gamma_{DUT}}^2 + R_{\Gamma_{DUT}}$

Frequency : 2 GHz

Output Level (CW) : 0 dBm

Definition of contribution	Expected Value <i>x</i> i	Standard Uncertainty <i>u(x_i)</i>	Distribution Function	Sensitivity Coefficient _{Ci}	Uncertainty contribution <i>u(y_i)</i>	
$\begin{array}{c} \text{Measurement} \\ \text{Repeatability} \\ (\Gamma_{\textit{DUT}} \) \end{array}$	0.044	0.0015	Normal	1	0.0015	
Bridge Directivity (D)	0.032	0.0321	Rectangular	1	0.0321	
Test port match (M)	0.100	0.0002	Rectangular	1	0.0002	
Linearity of spectrum analyser (T)	0.000	0.0005	Rectangular	1	0.0005	
Random contributions R _{Γ_{DUT} (Ref. signal generator at 0 dBm)}	0.001	0.0010	Normal	1	0.0010	
Manager and Value	0.014	Comb	0.0321			
	0.044	Expar	Expanded Uncertainty (CL = 95.45%)			

Model function

$$: u_{\Gamma_{DUT}} = D + T \Gamma_{DUT} + M \Gamma_{DUT}^{2} + R_{\Gamma_{DUT}}$$

Frequency : 8 GHz

Output Level (CW) : 0 dBm

Definition of contribution	Expected Value <i>x</i> i	Standard Uncertainty <i>u(x_i)</i>	Distribution Function	Sensitivity Coefficient _{Ci}	Uncertainty contribution <i>u(y_i)</i>
Measurement Repeatability $(\Gamma_{\scriptscriptstyle DUT})$	0.062	0.0012	Normal	1	0.0012
Bridge Directivity (D)	0.032	0.0317	Rectangular	1	0.0317
Test port match (M)	0.130	0.0005	Rectangular	1	0.0005
Linearity of spectrum analyser (T)	0.000	0.0005	Rectangular	1	0.0005
Random contributions $R_{\Gamma_{DUT}}$ (Ref. signal generator at 0 dBm)	0.001	0.0010	Normal	1	0.0010
Meanwood Value		Combined Uncertainty			0.0317
weasured value	0.062	Expa 95.4	anded Uncertainty (CL = 5%)		0.0634

Model function : $u_{\rm T}$

: $u_{\Gamma_{DUT}} = D + T \Gamma_{DUT} + M \Gamma_{DUT}^{2} + R_{\Gamma_{DUT}}$

Frequency : 12 GHz

Output Level (CW) : 0 dBm

Definition of contribution	Expected Value <i>x</i> i	Standard Uncertainty <i>u(x_i)</i>	Distribution Function	Sensitivity Coefficient <i>Ci</i>	Uncertainty contribution <i>u(y_i)</i>
Measurement Repeatability ($\Gamma_{\rm DUT}$)	0.145	0.0044	Normal	1	0.0044
Bridge Directivity (D)	0.032	0.0317	Rectangular	1	0.0317
Test port match (M)	0.130	0.0027	Rectangular	1	0.0027
Linearity of spectrum analyser (T)	0.000	0.0005	Rectangular	1	0.0005
Random contributions $R_{\Gamma_{DUT}}$ (Ref. signal generator at 0 dBm)	0.001	0.0010	Normal	1	0.0010
Measured Value	0.445	Combined Uncertainty			0.0321
	0.145	Expa 95.4	Expanded Uncertainty (CL = 95.45%)		

Model function : $u_{\Gamma_{DUT}} = D + T \Gamma_{DUT} + M {\Gamma_{DUT}}^2 + R_{\Gamma_{DUT}}$

: 15 GHz

Frequency

Output Level (CW) : 0 dBm

Definition of contribution	Expected Value <i>x</i> i	Standard Uncertainty <i>u(x_i)</i>	Distribution Function	Sensitivity Coefficient <i>C</i> i	Uncertainty contribution <i>u(y_i)</i>
Measurement Repeatability $(\Gamma_{\scriptscriptstyle DUT}$)	0.125	0.0021	Normal	1	0.0021
Bridge Directivity (D)	0.045	0.0455	Rectangular	1	0.0455
Test port match (M)	0.170	0.0027	Rectangular	1	0.0027
Linearity of spectrum analyser (T)	0.000	0.0005	Rectangular	1	0.0005
Random contributions $R_{\Gamma_{DUT}}$ (Ref. signal generator at 0 dBm)	0.001	0.0010	Normal	1	0.0010
Massured Volue	- /	Combined Uncertainty			0.0455
	0.125	Ex 95.	panded Uncertainty (CL = 45%)		0.0911

Model function : $u_{\Gamma_{DUT}} = D + T \Gamma_{DUT} + M \Gamma_{DUT}^{2} + R_{\Gamma_{DUT}}^{2}$

Frequency : 18 GHz

Output Level (CW) : 0 dBm

Definition of contribution	Expected Value <i>x</i> i	Standard Uncertainty <i>u(x_i)</i>	Distribution Function	Sensitivity Coefficient <i>Ci</i>	Uncertainty contribution <i>u(y_i)</i>
Measurement Repeatability $(\Gamma_{\scriptscriptstyle DUT}$)	0.069	0.0015	Normal	1	0.0015
Bridge Directivity (D)	0.045	0.0462	Rectangular	1	0.0462
Test port match (M)	0.170	0.0008	Rectangular	1	0.0008
Linearity of spectrum analyser (T)	0.000	0.0005	Rectangular	1	0.0005
Random contributions $R_{\Gamma_{DUT}}$ (Ref. signal generator at 0 dBm)	0.001	0.0010	Normal	1	0.0010
Massured Value	Com		ibined Uncertainty		0.0462
	0.069	Expa 95.4	anded Uncertainty (CL = 5%)		0.0924

7.2. References

- 1. P. Roberts "Measuring Output VSWR For An Active Levelled Source", Measurement Science Conference, 2008.
- 2. P. Roberts, P. Bunyan "Source Match Measurement for a Levelled Generator", Fluke Precision Measurement Ltd, PCAR & PB Sept. 2006.
- 3. J. Hurll, "Uncertainty and confidence in measurements", ch3. Microwave Measurements, 3th edition, The Institution of Engineering and Technology, 2007.