

Mathmet Measurement Uncertainty Training Activity:

lessons learned from a European community workshop

Thierry Caebergs (SPF Economie – division Métrologie) on behalf of the workshop participants

Mathmet MU training activity

- Within Euramet EMN Mathmet, volunteering activity
- Led by Katy Klauenberg (PTB)
- Initial phase 2021-2023, but targets long-term self-sustainability
- For trainees: single point of contact
- For trainers (consortium) :
 - Sharing training material
 - Establishing a <u>community</u> in MU training on European level
 - Workshop
 - Mutual attendance framework
- https://www.euramet.org/european-metrology-networks/mathmet/activities/measurement-uncertainty-training-activity

MU training workshop

- To share best practices in teaching MU: theory and experience
- Listen to <u>needs</u> from different horizons
- Freely share feedback, in an informal manner
- Organised on 17-18 May 2022, it gathered 40 participants from 25 organisations
- Introductory discussion on ongoing work to « break the ice », eg. with overview survey of
 - existing courses in EU (NMIs, mostly), often based on JCGM GUM suite
 - examples: in existing training courses and from EMPIR EMUE project

Overview

- What is Measurement Uncertainty to who?
- How to best teach it?
 - Purposes and content
 - Mathematical level
 - Methodologies
- When to teach it?

Participants – spanning the horizons

- NMIs:
 - PTB, LNE, NPL, INRIM, METAS, CEM, GUM, IPQ, NSAI, SMD
- Academics : U. Konstanz
- Legal metrology training center : DAM
- Industry : Testo
- And their contacts, subsequently

Participants

Measurement Uncertainty = ???

- A concept for doubt in (or fluctuation of) a measurement result
 - Or more interestingly: its sources?
- A computed value
- A computation
- A budget of uncertainty table
- (Quality System paperwork)

Measurement Uncertainty = ???

- A concept for doubt in (or fluctuation of) a measurement result
 - Or more interestingly: its sources?
- A computed value
- A computation
- A budget of uncertainty table
- (Quality System paperwork)

The MU process and its purposes

- What MU means to a given user depends on the purpose of MU:
 - MU itself
 - What does it mean? Risk eval., conformity, tool for decisions (equipment)
- Depending on the purpose, some aspects will be emphasized
- It can be quantitative or mostly assessment of its contributions/sources
- Who needs it? Anybody dealing with metrology!
- At least one common question :
 « How to read a certificate ? »
 - Central value, uncertainty, its evaluation, measurement method, ...

Irainir

Best practices

- Best practices depend on a conjunction of factors
- Audience is mostly defined by the purpose, but also mathematical background
- A single lecture can address several audiences (mathematical background)
- Also some generic conclusions

Purposes and content

- Families of content:
 - Raise awareness
 - Use for technical purposes → industry, legal metrology
 - Evaluation → NMI, cal. labs., accred. assessors
- Industry, legal metrology interests:
 - source of variability, understanding biases, acceptance criteria, diagnosing; instead of mathematical fundamentals
 - → Practical implications + (non-mathematical) concept of uncertainty

- Purposes :
 - Process precision
 - Evaluation of specifications
 - Conformity assessment
 - Support for decision on equipment suitability
 - Support explanation of decisions (legal metrology)
- Know your « <u>customers'</u> <u>customers »</u> profile for a better content tuning!

Specific points

- Industry
 - More about precision
 - Advanced topics:
 When is GUM relevant?, BoU optimization, correlations
- Support staff
 - How to know if a certificate is correctly filled in?

- Legal metrology
 - Calibration vs. verification
 - MPE vs MU
 - Sampling

- Accreditation world
 - Cal labs : MU is part of measurement ; model oriented
 - Testing labs: less math; support for conformity decision, ask for guidance

Mathematical proficiency level

- Calibration laboratories
- Testing laboratories
- Industrials
- NMI
- Support staffs
- School/univ. students: tests / flipped classrooms
- Classroom subgroup Subgroup Subgroup Subgroup Subgroup

- Metrology field inspectors :
 - blended approach for flipped classrooms

Best practices – mathematical content

- Basic level reveals to be the most important :
 - Many profiles addressed with basic needs
 - Almost no mathematics needed, concept and feeling instead
- Increasing mathematical background needed
- Multi-level teaching separate lectures :
 - The second is topical application
- JCGM GUM suite also follows these steps:
 - MC (GUM-S1) can be easier to teach than LPU (GUM), modelling in GUM-6

Best practices - methods

- Physical attendance
- Flipped classrooms :
 - Secondary school profiles
 - concept of uncertainty, set of measurements
 - constantly bridging Theory <-> Experiment
 - Regular tests
- Blended flipped classroom :
 - Applied for metrology field inspectors
- E-learning: deserves a dedicated design

Best practices - methods

- During the lectures : discussion
 + intermediate evaluation
- Follow-up contact
- Flipped classroom or blended approach :
 - Better problem identifications

Design in progressive steps:

- Use & learning steps: Bloom's taxonomy: from remembering to creating
- Mitigate/limit cognitive overload and conceptual cliffs
 - Withstandable info flow: adapt to students
 - Intermediate quizzes
 - Ex. of cliff: formulation step (support: GUM-6)

Best practices - methods

- Follow a red wire, but break the monotony
- Real examples, real pictures, real ...
 - Even more relevant to the audience (ask them!)
- Illustrations, pictures, animations of mathematical concepts (esp. for non-literates in math)

When?

- After some practice, say 1 year of experience
 - fit-for-purpose with current job
 - Better identification of own needs
 - Better introspective against the teaching
- Refresh course needed
 - Every 2-3 years
 - ISO/IEC 17025 implies/enforces periodicity
- Flipped classroom and blended approach need a specific schedule

(Short) conclusions

- Concept of uncertainty is much more than its computation
- Proper use of uncertainty: certificate, decision making
- Basic level is of interest for most of trainees
- Keep interacting/adapting at any stage!
- Fit the needs and purposes of your trainees (and their indirect user community)
- E-learning is a possibility but it deserves a full design on its own https://www.euramet.org/european-metrology-networks/mathmet/activities/measurement-uncertainty-training-activity

Questions? Remarks? Suggestions?

Thank you for your attention!

Real authors of this presentation

Next steps not to miss

- Raising awareness videos
- Analysis of survey in accreditation labs, bodies and assessors
- Have a look at the courses/ lab NMI training offers
 https://www.euramet.org/european-metrology-networks/mathmet/activities/measurement-uncertainty-training-activity

Bloom's taxonomy

Assimilation of the training material

